Super-twisting algorithm, a second-order sliding mode control method, is studied for hydropower plant frequency control. Two versions of this algorithm are introduced in this paper. Simulation results from both of these second-order methods and regular sliding mode control are compared on the basis of system responses and control efforts. It is shown that the second-order sliding mode controller is able to reduce chattering effects associated with the regular sliding mode control and preserve the robustness of the regular sliding mode control as well.

References

References
1.
International Energy Agency (IEA)
,
2007
, “
Key World Energy Statistics
,” OECD/IEA, Paris, France.
2.
Mahmoud
,
M.
,
Dutton
,
K.
, and
Denman
,
M.
,
2005
, “
Design and Simulation of a Nonlinear Fuzzy Controller for a Hydropower Plant
,”
Electr. Power Syst. Res.
,
73
(
2
), pp.
87
99
.
3.
Ye
,
L.
,
Wei
,
S.
,
Li
,
Z.
,
Malik
,
O.
,
Hope
,
G.
, and
Hancock
,
G.
,
1990
, “
An Intelligent Self-Improving Control Strategy and Its Microprocessor-Based Implementation to a Hydro-Turbine Governing System
,”
Can. J. Electr. Comput. Eng.
,
15
(4), pp.
130
138
.
4.
Venayagamoorthy
,
G.
, and
Harley
,
R.
,
2001
, “
A Continually Online Trained Neurocontroller for Excitation and Turbine Control of a Turbogenerator
,”
IEEE Trans. Energy Convers.
,
16
(
3
), pp.
261
269
.
5.
Sivaramakrishnan
,
A.
,
Hariharan
,
M.
, and
Srisailam
,
M.
,
1984
, “
Design of Variable-Structure Load-Frequency Controller Using Pole Assignment Technique
,”
Int. J. Control
,
40
(
3
), pp.
487
498
.
6.
Bengiamin
,
N.
, and
Chan
,
W.
,
1982
, “
Variable Structure Control of Electric Power Generation
,”
IEEE Trans. Power Appar. Syst.
,
101
(
2
), pp.
376
380
.
7.
Ding
,
X.
, and
Sinha
,
A.
,
2011
, “
Sliding Mode/H∞ Control of a Hydropower Plant
,”
American Control Conference
(
IEEE
), San Francisco, CA, June 29–July 1, pp.
5201
5206
.
8.
Drazenovic
,
B.
,
1969
, “
The Invariance Condition in Variable Structure Systems
,”
Automatica
,
5
(
3
), pp.
287
295
.
9.
Sinha
,
A.
,
2007
,
Linear Systems: Optimal and Robust Control
,
CRC Press Taylor & Francis Group
,
New York
, Chap. 6.
10.
Levant
,
A.
,
2002
, “
Introduction to Higher-Order Sliding Modes
,” Tel Aviv University, Tel Aviv, Israel, http://www.tau.ac.il/~levant/levant_ifac2008.pdf
11.
Levant
,
A.
,
1993
, “
Sliding Order and Sliding Accuracy in Sliding Mode Control
,”
Int. J. Control
,
59
(
6
), pp.
1247
1263
.
12.
Bartolini
,
G.
, and
Punta
,
E.
,
2000
, “
Chattering Elimination With Second-Order Sliding Modes Robust to Coulomb Friction
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
4
), pp.
679
686
.
13.
Romdhane
,
H.
,
Dehri
,
K.
, and
Nouri
,
A. S.
,
2016
, “
Discrete Second-Order Sliding Mode Control Based on Optimal Sliding Function Vector for Multivariable Systems With Input-Output Representation
,”
Int. J. Robust Nonlinear Control
,
26
(
17
), pp.
3806
3830
.
14.
Goh
,
K.
,
Spurgeon
,
S.
, and
Jones
,
N.
,
2003
, “
High-Order Sliding Mode Control of a Diesel Generator Set
,”
Proc. Inst. Mech. Eng., Part I
,
217
(
3
), pp.
229
241
.
15.
Larsen
,
N. E. P.
,
2009
, “
Second-Order Sliding Mode Control of an Induction Motor
,” Master's thesis, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark.
You do not currently have access to this content.