In this work, a novel design of a portable leg rehabilitation system (PLRS) is presented. The main purpose of this paper is to provide a portable system, which allows patients with lower-limb disabilities to perform leg and foot rehabilitation exercises anywhere without any embarrassment compared to other devices that lack the portability feature. The model of the system is identified by inverse kinematics and dynamics analysis. In kinematics analysis, the pattern of motion of both leg and foot holders for different modes of operation has been investigated. The system is modeled by applying Lagrangian dynamics approach. The mathematical model derived considers calf and foot masses and moment of inertias as important parameters. Therefore, a gait analysis study is conducted to calculate the required parameters to simulate the model. Proportional derivative (PD) controller and proportional-integral-derivative (PID) controller are applied to the model and compared. The PID controller optimized by hybrid spiral-dynamics bacteria-chemotaxis (HSDBC) algorithm provides the best response with a reasonable settling time and minimum overshot. The robustness of the HSDBC–PID controller is tested by applying disturbance force with various amplitudes. A setup is built for the system experimental validation where the system mathematical model is compare with the estimated model using system identification (SI) toolbox. A significant difference is observed between both models when applying the obtained HSDBC–PID controller for the mathematical model. The results of this experiment are used to update the controller parameters of the HSDBC-optimized PID.

References

References
1.
Díaz
,
I.
,
Gil
,
J. J.
, and
Sánchez
,
E.
,
2011
, “
Lower-Limb Robotic Rehabilitation: Literature Review and Challenges
,”
J. Rob.
,
2011
, p.
759764
.
2.
Monaco
,
V.
,
Galardi
,
G.
,
Coscia
,
M.
,
Martelli
,
D.
, and
Micera
,
S.
,
2012
, “
Design and Evaluation of NEUROBike: A Neurorehabilitative Platform for Bedridden Post-Stroke Patients
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
20
(
6
), pp.
845
852
.
3.
Hwang
,
B.
, and
Jeon
,
D.
,
2012
, “
A Wheelchair Integrated Lower Limb Exercise/Rehabilitation System: Design and Experimental Results on the Knee Joint
,”
IEEE/SICE International Symposium on System Integration
(
SII
), Fukuoka, Japan, Dec. 16–18, pp.
164
169
.
4.
Agrawal
,
S. K.
, and
Fattah
,
A.
,
2004
, “
Theory and Design of an Orthotic Device for Full or Partial Gravity-Balancing of a Human Leg During Motion
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
2
), pp.
157
165
.
5.
Banala
,
S. K.
,
Agrawal
,
S. K.
,
Fattah
,
A.
,
Krishnamoorthy
,
V.
,
Hsu
,
W.-L.
,
Scholz
,
J.
, and
Rudolph
,
K.
,
2006
, “
Gravity-Balancing Leg Orthosis and Its Performance Evaluation
,”
IEEE Trans. Rob.
,
22
(
6
), pp.
1228
1239
.
6.
Agrawal
,
S. K.
,
Banala
,
S. K.
,
Fattah
,
A.
,
Sangwan
,
V.
,
Krishnamoorthy
,
V.
,
Scholz
,
J. P.
, and
Hsu
,
W.-L.
,
2007
, “
Assessment of Motion of a Swing Leg and Gait Rehabilitation With a Gravity Balancing Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
410
420
.
7.
Banala
,
S. K.
,
Kim
,
S. H.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2009
, “
Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
1
), pp.
2
8
.
8.
Banala
,
S. K.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2010
, “
Novel Gait Adaptation and Neuromotor Training Results Using an Active Leg Exoskeleton
,”
IEEE/ASME Trans. Mechatron.
,
15
(
2
), pp.
216
225
.
9.
Duschau-Wicke
,
A.
,
von Zitzewitz
,
J.
,
Caprez
,
A.
,
Lunenburger
,
L.
, and
Riener
,
R.
,
2010
, “
Path Control: A Method for Patient-Cooperative Robot-Aided Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
1
), pp.
38
48
.
10.
Zhang
,
M.
, and
Li
,
X.
,
2010
, “
A Design of the Mechanism for Lower Limbs Passive Rehabilitation and Kinematics Analysis
,” Fifth International Conference on Frontier of Computer Science and Technology (
FCST
), Changchun, China, Aug. 18–22, pp.
603
607
.
11.
Homma
,
K.
,
Fukuda
,
O.
, and
Nagata
,
Y.
,
2002
, “
Study of a Wire-Driven Leg Rehabilitation System
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Lausanne, Switzerland, Sept. 30–Oct. 4, pp.
1451
1456
.
12.
Homma
,
K.
,
Fukuda
,
O.
,
Sugawara
,
J.
,
Nagata
,
Y.
, and
Usuba
,
M.
,
2003
, “
A Wire-Driven Leg Rehabilitation System: Development of a 4-DOF Experimental System
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM 2003)
, Kobe, Japan, July 20–24, Vol.
2
, pp.
908
913
.
13.
Yakimovich
,
T.
,
Kofman
,
J.
, and
Lemaire
,
E. D.
,
2006
, “
Design and Evaluation of a Stance-Control Knee-Ankle-Foot Orthosis Knee Joint
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
3
), pp.
361
369
.
14.
Park
,
Y.-L.
,
Chen
,
B.
,
Young
,
D.
,
Stirling
,
L.
,
Wood
,
R. J.
,
Goldfield
,
E.
, and
Nagpal
,
R.
,
2011
, “
Bio-Inspired Active Soft Orthotic Device for Ankle Foot Pathologies
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)
, San Francisco, CA, Sept. 25–30, pp.
4488
4495
.
15.
McNeal
,
D. R.
,
Nakai
,
R. J.
,
Meadows
,
P.
, and
Tu
,
W.
,
1989
, “
Open-Loop Control of the Freely-Swinging Paralyzed Leg
,”
IEEE Trans. Biomed. Eng.
,
36
(
9
), pp.
895
905
.
16.
Van Der Spek
,
J. H.
,
Velthuis
,
W. J. R.
,
Veltink
,
P. H.
, and
De Vries
,
T. J. A.
,
1996
, “
Neuro Fuzzy Control of the FES Assisted Freely Swinging Leg of Paraplegic Subjects
,” 18th Annual International Conference of the
IEEE
Engineering in Medicine and Biology Society
, Amsterdam, The Netherlands, Oct. 31–Nov. 3, pp.
2234
2235
.
17.
Tsukahara
,
A.
,
Hasegawa
,
Y.
, and
Sankai
,
Y.
,
2011
, “
Gait Support for Complete Spinal Cord Injury Patient by Synchronized Leg-Swing With HAL
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
1737
1742
.
18.
Aguirre-Ollinger
,
G.
,
Colgate
,
J. E.
,
Peshkin
,
M.
, and
Goswami
,
A.
,
2012
, “
Inertia Compensation Control of a One-Degree-of-Freedom Exoskeleton for Lower-Limb Assistance: Initial Experiments
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
20
(
1
), pp.
68
77
.
19.
Vaughan
,
C.
,
Davis
,
B.
, and
O'Connor
,
J.
,
1999
,
Dynamics of Human Gait
,
Kiboho Publishers
,
Cape Town, South Africa
.
20.
Tamura
,
K.
, and
Yasuda
,
K.
,
2011
, “
Spiral Dynamics Inspired Optimization
,”
J. Adv. Comput. Intell. Intell. Inf.
,
15
(
8
), pp.
2
3
.
21.
Korani
,
W. M.
,
Dorrah
,
H. T.
, and
Emara
,
H. M.
,
2008
, “
Bacterial Foraging Oriented by Particle Swarm Optimization Strategy for PID Tuning
,”
GECCO Conference Companion on Genetic and Evolutionary Computation—GECCO’08
, Atlanta, GA, July 12–16, p.
1823
.
22.
Nasir
,
A. N. K.
,
Tokhi
,
M. O.
,
Abd Ghani
,
N. M.
, and
Ahmad
,
M. A.
,
2012
, “
A Novel Hybrid Spiral Dynamics Bacterial-Foraging Algorithm for Global Optimization With Application to Control Design
,”
12th Annual Workshop on Computational Intelligence
(
UKCI2012
), Edinburgh, UK, Sept. 5–7, pp.
1
7
.
23.
Nasir
,
A. N. K.
,
Tokhi
,
M. O.
,
Abd Ghani
,
N. M.
, and
Ahmad
,
M. A.
,
2012
, “
A Novel Hybrid Spiral Dynamics Bacterial-Chemotaxis Algorithm for Global Optimization With Application to Controller Design
,”
UKACC
International Conference on Control
, Cardiff, UK, Sept. 3–5, pp.
753
758
.
24.
Nasir
,
A. N. K.
, and
Tokhi
,
M. O.
,
2013
, “
A Novel Hybrid Bacteria-Chemotaxis Spiral-Dynamics Algorithm With Application to Modelling of a Flexible System
,”
Fifth International Conference on Modeling, Simulation and Applied Optimization (ICMSAO’13)
, Hammamet, Tunisia, Apr. 28–30.
You do not currently have access to this content.