Finite-time consensus has attracted significant research interest due to its wide applications in multiagent systems. Various results have been developed to enable multiagent systems to complete desired tasks in finite-time. However, most existing results in the literature can only ensure finite-time consensus without considering temporal constraints, where the time used to achieve consensus cannot be preset arbitrarily and is generally determined by the system initial conditions, prohibiting its application in time-sensitive tasks. Motivated to achieve consensus within a desired time frame, user-specified finite-time consensus is developed in the present work for a multiagent system to ensure consensus at a prespecified time instant. The interaction among agents (e.g., communication and information exchange) is modeled as a time-varying graph, where each edge is associated with a time-varying weight representing the time-varying interaction between neighboring agents. Consensus over such time-varying graph is then proven based on a time transformation and is guaranteed to be completed within a prespecified time frame. To demonstrate the developed framework, finite-time rendezvous of a multiagent system is considered as an example application, where agents with limited communication capabilities are desired to meet at a common location at a preset time instant with constraints on preserving global network connectivity. A numerical simulation is provided to demonstrate the efficiency of the developed result.

References

References
1.
Dimarogonas
,
D. V.
, and
Kyriakopoulos
,
K. J.
,
2007
, “
On the Rendezvous Problem for Multiple Nonholonomic Agents
,”
IEEE Trans. Autom. Control
,
52
(
5
), pp.
916
922
.
2.
Hui
,
Q.
,
2011
, “
Finite-Time Rendezvous Algorithms for Mobile Autonomous Agents
,”
IEEE Trans. Autom. Control
,
56
(
1
), pp.
207
211
.
3.
Tanner
,
H. G.
,
Jadbabaie
,
A.
, and
Pappas
,
G. J.
,
2007
, “
Flocking in Fixed and Switching Networks
,”
IEEE Trans. Autom. Control
,
52
(
5
), pp.
863
868
.
4.
Zhu
,
M.
, and
Martínez
,
S.
,
2010
, “
Discrete-Time Dynamic Average Consensus
,”
Automatica
,
46
(
2
), pp.
322
329
.
5.
Olfati-Saber
,
R.
,
Fax
,
J. A.
, and
Murray
,
R. M.
,
2004
, “
Consensus Problems in Networks of Agents With Switching Topology and Time-Delays
,”
IEEE Trans. Autom. Control
,
49
(
9
), pp.
1520
1533
.
6.
Jadbabaie
,
A.
,
Lin
,
J.
, and
Morse
,
A.
,
2003
, “
Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules
,”
IEEE Trans. Autom. Control
,
48
(
6
), pp.
988
1001
.
7.
Kan
,
Z.
,
Dani
,
A.
,
Shea
,
J. M.
, and
Dixon
,
W. E.
,
2012
, “
Network Connectivity Preserving Formation Stabilization and Obstacle Avoidance Via a Decentralized Controller
,”
IEEE Trans. Autom. Control
,
57
(
7
), pp.
1827
1832
.
8.
Kan
,
Z.
,
Navaravong
,
L.
,
Shea
,
J.
,
Pasiliao
,
E.
, and
Dixon
,
W. E.
,
2015
, “
Graph Matching Based Formation Reconfiguration of Networked Agents With Connectivity Maintenance
,”
IEEE Trans. Control Networks Syst.
,
2
(
1
), pp.
24
35
.
9.
Dimarogonas
,
D.
, and
Johansson
,
K.
,
2010
, “
Bounded Control of Network Connectivity in Multi-Agent Systems
,”
Control Theory Appl.
,
4
(
8
), pp.
1330
1338
.
10.
Ren
,
W.
,
Beard
,
R. W.
, and
Atkins
,
E. M.
,
2007
, “
Information Consensus in Multivehicle Cooperative Control
,”
IEEE Control Syst. Mag.
,
27
(
2
), pp.
71
82
.
11.
Olfati-Saber
,
R.
,
Fax
,
J. A.
, and
Murray
,
R. M.
,
2007
, “
Consensus and Cooperation in Networked Multi-Agent Systems
,”
Proc. IEEE
,
95
(
1
), pp.
215
233
.
12.
Julian
,
B. J.
,
Angermann
,
M.
,
Schwager
,
M.
, and
Rus
,
D.
,
2012
, “
Distributed Robotic Sensor Networks: An Information-Theoretic Approach
,”
Int. J. Rob. Res.
,
31
(
10
), pp.
1134
1154
.
13.
Cortés
,
J.
,
2006
, “
Finite-Time Convergent Gradient Flows With Applications to Network Consensus
,”
Automatica
,
42
(
11
), pp.
1993
2000
.
14.
Hui
,
Q.
,
Haddad
,
W. M.
, and
Bhat
,
S. P.
,
2008
, “
Finite-Time Semistability and Consensus for Nonlinear Dynamical Networks
,”
IEEE Trans. Autom. Control
,
53
(
8
), pp.
1887
1900
.
15.
Chen
,
G.
,
Lewis
,
F. L.
, and
Xie
,
L.
,
2011
, “
Finite-Time Distributed Consensus Via Binary Control Protocols
,”
Automatica
,
47
(
9
), pp.
1962
1968
.
16.
Jiang
,
F.
, and
Wang
,
L.
,
2011
, “
Finite-Time Weighted Average Consensus With Respect to a Monotonic Function and Its Application
,”
Syst. Control Lett.
,
60
(
9
), pp.
718
725
.
17.
Li
,
C.
, and
Qu
,
Z.
,
2014
, “
Distributed Finite-Time Consensus of Nonlinear Systems Under Switching Topologies
,”
Automatica
,
50
(
6
), pp.
1626
1631
.
18.
Cao
,
Y.
,
Ren
,
W.
, and
Meng
,
Z.
,
2010
, “
Decentralized Finite-Time Sliding Mode Estimators and Their Applications in Decentralized Finite-Time Formation Tracking
,”
Syst. Control Lett.
,
59
(
9
), pp.
522
529
.
19.
Xiao
,
F.
,
Wang
,
L.
,
Chen
,
J.
, and
Gao
,
Y.
,
2009
, “
Finite-Time Formation Control for Multi-Agent Systems
,”
Automatica
,
45
(
11
), pp.
2605
2611
.
20.
Li
,
S.
,
Du
,
H.
, and
Lin
,
X.
,
2011
, “
Finite-Time Consensus Algorithm for Multi-Agent Systems With Double-Integrator Dynamics
,”
Automatica
,
47
(
8
), pp.
1706
1712
.
21.
Ou
,
M.
,
Du
,
H.
, and
Li
,
S.
,
2014
, “
Finite-Time Formation Control of Multiple Nonholonomic Mobile Robots
,”
Int. J. Robust Nonlinear Control
,
24
(
1
), pp.
140
165
.
22.
Yong
,
C.
,
Guangming
,
X.
, and
Huiyang
,
L.
,
2012
, “
Reaching Consensus at a Preset Time: Single-Integrator Dynamics Case
,”
IEEE
Chinese Control Conference
, pp.
6220
6225
.
23.
Yong
,
C.
,
Guangming
,
X.
, and
Huiyang
,
L.
,
2012
, “
Reaching Consensus at a Preset Time: Double-Integrator Dynamics Case
,”
IEEE
Chinese Control Conference
, pp.
6309
6314
.
24.
Yong
,
C.
,
Huiyang
,
L.
, and
Guangming
,
X.
,
2012
, “
Finite-Time Containment Control for Multi-Agent Systems With Single-Integrator Dynamics
,”
IEEE
Chinese Control Conference
, pp.
6433
6438
.
25.
Wang
,
C.
,
Xie
,
G.
, and
Cao
,
M.
,
2013
, “
Forming Circle Formations of Anonymous Mobile Agents With Order Preservation
,”
IEEE Trans. Autom. Control
,
58
(
12
), pp.
3248
3254
.
26.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
27.
Yucelen
,
T.
,
Kan
,
Z.
, and
Pasiliao
,
E.
, “
Finite-Time Cooperative Engagement
,”
IEEE Trans. Autom. Control
(in press).
28.
Zavlanos
,
M.
,
Egerstedt
,
M.
, and
Pappas
,
G.
,
2011
, “
Graph Theoretic Connectivity Control of Mobile Robot Networks
,”
Proc. IEEE
,
99
(
9
), pp.
1525
1540
.
29.
Kan
,
Z.
,
Klotz
,
J.
,
E. L. P.
, Jr
.
, and
Dixon
,
W. E.
,
2015
, “
Containment Control for a Social Network With State-Dependent Connectivity
,”
Automatica
,
56
, pp.
86
92
.
30.
Navaravong
,
L.
,
Kan
,
Z.
,
Shea
,
J. M.
, and
Dixon
,
W. E.
,
2012
, “
Formation Reconfiguration for Mobile Robots With Network Connectivity Constraints
,”
IEEE Network
,
26
(
4
), pp.
18
24
.
31.
Kan
,
Z.
,
Klotz
,
J. R.
,
Doucette
,
E.
,
Shea
,
J.
, and
Dixon
,
W. E.
,
2017
, “
Decentralized Rendezvous of Nonholonomic Robots With Sensing and Connectivity Constraints
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
2
), p.
0245011
.
32.
Moreau
,
L.
,
2004
, “
Stability of Continuous-Time Distributed Consensus Algorithms
,”
IEEE
Conference on Decision and Control
, pp.
3998
4003
.
33.
Luenberger
,
D.
,
1979
,
Introduction to Dynamic Systems: Theory, Models, and Applications
,
Wiley
,
Hoboken, NJ
.
34.
Benner
,
P.
,
Findeisen
,
R.
,
Flockerzi
,
D.
,
Reichl
,
U.
, and
Sundmacher
,
K.
,
2014
,
Large-Scale Networks in Engineering and Life Sciences
,
Springer
,
Berlin
.
35.
Rimon
,
E.
, and
Koditschek
,
D.
,
1992
, “
Exact Robot Navigation Using Artificial Potential Functions
,”
IEEE Trans. Rob. Autom.
,
8
(
5
), pp.
501
518
.
You do not currently have access to this content.