In this paper, an adaptive fuzzy controller design methodology via multi-objective particle swarm optimization (MOPSO) based on robust stability criterion is proposed. The plant to be controlled is modeled from its input–output experimental data considering a Takagi–Sugeno (TS) fuzzy nonlinear autoregressive with exogenous input model, by using the fuzzy C-means clustering algorithm (antecedent parameters estimation) and the weighted recursive least squares (WRLS) algorithm (consequent parameters estimation). An adaptation mechanism as MOPSO problem for online tuning of a fuzzy model based digital proportional-integral-derivative (PID) controller parameters, based on the gain and phase margins specifications, is formulated. Experimental results for adaptive fuzzy digital PID control of a thermal plant with time-varying delay are presented to illustrate the efficiency and applicability of the proposed methodology.

References

References
1.
Feng
,
G.
,
2006
, “
A Survey on Analysis and Design of Model-Based Fuzzy Control Systems
,”
IEEE Trans. Fuzzy Syst.
,
14
(
5
), pp.
676
697
.
2.
Yue
,
M.
,
An
,
C.
,
Du
,
Y.
, and
Sun
,
J.
,
2015
, “
Indirect Adaptive Fuzzy Control for a Nonholonomic/Underactuated Wheeled Inverted Pendulum Vehicle Based on a Data-Driven Trajectory Planner
,”
Fuzzy Sets Syst.
,
290
, pp.
158
177
.
3.
Wai
,
R.-J.
,
Chen
,
M.-W.
, and
Liu
,
Y.-K.
,
2015
, “
Design of Adaptive Control and Fuzzy Neural Network Control for Single-Stage Boost Inverter
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5434
5445
.
4.
Yang
,
Y.
,
Hua
,
C.
, and
Guan
,
X.
,
2014
, “
Adaptive Fuzzy Finite-Time Coordination Control for Networked Nonlinear Bilateral Teleoperation System
,”
IEEE Trans. Fuzzy Syst.
,
22
(
3
), pp.
631
641
.
5.
Hwang
,
C.-L.
,
Chiang
,
C.-C.
, and
Yeh
,
Y.-W.
,
2014
, “
Adaptive Fuzzy Hierarchical Sliding-Mode Control for the Trajectory Tracking of Uncertain Underactuated Nonlinear Dynamic Systems
,”
IEEE Trans. Fuzzy Syst.
,
22
(
2
), pp.
286
299
.
6.
Tong
,
S.
,
Wang
,
T.
,
Li
,
Y.
, and
Chen
,
B.
,
2013
, “
A Combined Backstepping and Stochastic Small-Gain Approach to Robust Adaptive Fuzzy Output Feedback Control
,”
IEEE Trans. Fuzzy Syst.
,
21
(
2
), pp.
314
327
.
7.
Lakhekar
,
G.
, and
Saundarmal
,
V.
,
2013
, “
Novel Adaptive Fuzzy Sliding Mode Controller for Depth Control of an Underwater Vehicles
,”
IEEE International Conference on Fuzzy Systems (FUZZ)
, pp.
1
7
.
8.
Das Sharma
,
K.
,
Chatterjee
,
A.
, and
Rakshit
,
A.
,
2012
, “
Lyapunov Hybrid Stable Adaptive Fuzzy Tracking Control Approach for Vision-Based Robot Navigation
,”
IEEE Trans. Instrum. Meas.
,
61
(
7
), pp.
1908
1914
.
9.
Procyk
,
T.
, and
Mamdani
,
E.
,
1979
, “
A Linguistic Self-Organizing Process Controller
,”
Automatica
,
15
(
1
), pp.
15
30
.
10.
Gao
,
Y.
,
Wang
,
H.
, and
Liu
,
Y.-J.
,
2015
, “
Adaptive Fuzzy Control With Minimal Leaning Parameters for Electric Induction Motors
,”
Neurocomputing
,
156
, pp.
143
150
.
11.
Yang
,
Y.
, and
Ren
,
J.
,
2003
, “
Adaptive Fuzzy Robust Tracking Controller Design via Small Gain Approach and Its Application
,”
IEEE Trans. Fuzzy Syst.
,
11
(
6
), pp.
783
795
.
12.
Yang
,
Y.
, and
Zhou
,
C.
,
2005
, “
Adaptive Fuzzy h∞ Stabilization for Strict-Feedback Canonical Nonlinear Systems via Backstepping and Small-Gain Approach
,”
IEEE Trans. Fuzzy Syst.
,
13
(
1
), pp.
104
114
.
13.
Li
,
Y.
,
Tong
,
S.
,
Liu
,
Y.
, and
Li
,
T.
,
2014
, “
Adaptive Fuzzy Robust Output Feedback Control of Nonlinear Systems With Unknown Dead Zones Based on a Small-Gain Approach
,”
IEEE Trans. Fuzzy Syst.
,
22
(
1
), pp.
164
176
.
14.
Li
,
Y.
,
Tong
,
S.
,
Li
,
T.
, and
Jing
,
X.
,
2014
, “
Adaptive Fuzzy Control of Uncertain Stochastic Nonlinear Systems With Unknown Dead Zone Using Small-Gain Approach
,”
Fuzzy Sets Syst.
,
235
, pp.
1
24
.
15.
Wu
,
T.-S.
, and
Karkoub
,
M.
,
2014
. “
Fuzzy Adaptive Tracking Control Design for Nonlinear Systems With Output Delays
,”
Fuzzy Sets Syst.
,
254
, pp.
1
25
.
16.
Amrane
,
A.
,
Louri
,
M.
,
Larabi
,
A.
, and
Hamzaoui
,
A.
,
2013
, “
A Fuzzy Model Reference Adaptive System Control for Induction Motor Drives
,”
3rd International Conference on Systems and Control (ICSC)
, pp.
177
182
.
17.
Huek
,
P.
, and
Cerman
,
O.
,
2013
, “
Fuzzy Model Reference Control With Adaptation of Input Fuzzy Sets
,”
Knowl. Based Syst.
,
49
, pp.
116
122
.
18.
Cerman
,
O.
,
2013
, “
Fuzzy Model Reference Control With Adaptation Mechanism
,”
Expert Syst. Appl.
,
40
(
13
), pp.
5181
5187
.
19.
Jasim
,
I. F.
,
Plapper
,
P. W.
, and
Voos
,
H.
,
2015
, “
Adaptive Sliding Mode Fuzzy Control for Unknown Robots With Arbitrarily-Switched Constraints
,”
Mechatronics
,
30
, pp.
174
186
.
20.
Do
,
H. T.
,
Park
,
H. G.
, and
Ahn
,
K. K.
,
2014
, “
Application of an Adaptive Fuzzy Sliding Mode Controller in Velocity Control of a Secondary Controlled Hydrostatic Transmission System
,”
Mechatronics
,
24
(
8
), pp.
1157
1165
.
21.
Saoudi
,
K.
, and
Harmas
,
M.
,
2014
, “
Enhanced Design of an Indirect Adaptive Fuzzy Sliding Mode Power System Stabilizer for Multi-Machine Power Systems
,”
Int. J. Electr. Power Energy Syst.
,
54
, pp.
425
431
.
22.
Lian
,
R.-J.
,
2014
, “
Adaptive Self-Organizing Fuzzy Sliding-Mode Radial Basis-Function Neural-Network Controller for Robotic Systems
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1493
1503
.
23.
Lian
,
R.-J.
,
2012
, “
Design of an Enhanced Adaptive Self-Organizing Fuzzy Sliding-Mode Controller for Robotic Systems
,”
Expert Syst. Appl.
,
39
(
1
), pp.
1545
1554
.
24.
Lu
,
Q.
, and
Mahfouf
,
M.
,
2012
, “
Multivariable Self-Organizing Fuzzy Logic Control Using Dynamic Performance Index and Linguistic Compensators
,”
Eng. Appl. Artif. Intell.
,
25
(
8
), pp.
1537
1547
.
25.
Zhou
,
G.
, and
Birdwell
,
J.
,
1994
, “
Fuzzy Logic-Based PID Autotuner Design Using Simulated Annealing
,”
IEEE/IFAC Joint Symposium on Computer-Aided Control System Design
, pp.
67
72
.
26.
Herrera
,
F.
,
Lozano
,
M.
, and
Verdegay
,
J.
,
1995
, “
Tuning Fuzzy Logic Controllers by Genetic Algorithms
,”
Int. J. Approximate Reasoning
,
12
(
34
), pp.
299
315
.
27.
Lin
,
S.-C.
, and
Chen
,
Y.-Y.
,
1995
, “
On GA-Based Optimal Fuzzy Control
,”
IEEE International Conference on Evolutionary Computation
, Vol.
2
, pp.
846
851
.
28.
RenHou
,
L.
, and
Yi
,
Z.
,
1996
, “
Fuzzy Logic Controller Based on Genetic Algorithms
,”
Fuzzy Sets Syst.
,
83
(
1
), pp.
1
10
.
29.
Chin
,
T.
, and
Qi
,
X.
,
1998
, “
Genetic Algorithms for Learning the Rule Base of Fuzzy Logic Controller
,”
Fuzzy Sets Syst.
,
97
(
1
), pp.
1
7
.
30.
Martnez-Alfaro
,
H.
, and
Gmez-Garca
,
S.
,
1998
, “
Mobile Robot Path Planning and Tracking Using Simulated Annealing and Fuzzy Logic Control
,”
Expert Syst. Appl.
,
15
(
34
), pp.
421
429
.
31.
Cui
,
X.
,
Hardin
,
T.
,
Ragade
,
R.
, and
Elmaghraby
,
A.
,
2004
, “
A Swarm-Based Fuzzy Logic Control Mobile Sensor Network for Hazardous Contaminants Localization
,”
2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems
, pp.
194
203
.
32.
Juang
,
C.-F.
, and
Liou
,
Y.-C.
,
2004
, “
TSK-Type Recurrent Fuzzy Network Design by the Hybrid of Genetic Algorithm and Particle Swarm Optimization
,”
2004 IEEE International Conference on Systems, Man and Cybernetics
, Vol.
3
, pp.
2314
2318
.
33.
Venayagamoorthy
,
G.
, and
Doctor
,
S.
,
2004
, “
Navigation of Mobile Sensors Using PSO and Embedded PSO in a Fuzzy Logic Controller
,”
39th IAS Annual Meeting in Industry Applications Conference
, 2004, Conference Record of the 2004 IEEE, Vol.
2
, pp.
1200
1206
.
34.
Bouallgue
,
S.
,
Haggge
,
J.
,
Ayadi
,
M.
, and
Benrejeb
,
M.
,
2012
, “
PID-Type Fuzzy Logic Controller Tuning Based on Particle Swarm Optimization
,”
Eng. Appl. Artif. Intell.
,
25
(
3
), pp.
484
493
.
35.
Patel
,
R.
, and
Kumar
,
V.
,
2015
, “
Artificial Neuro Fuzzy Logic PID Controller Based on BF-PSO Algorithm
,”
Procedia Comput. Sci.
,
54
, pp.
463
471
.
36.
Sabzi
,
H. Z.
,
Humberson
,
D.
,
Abudu
,
S.
, and
King
,
J. P.
,
2015
, “
Optimization of Adaptive Fuzzy Logic Controller Using Novel Combined Evolutionary Algorithms, and Its Application in Diez Lagos Flood Controlling System, Southern New Mexico
,”
Expert Syst. Appl.
,
43
, pp.
154
164
.
37.
Hajebi
,
P.
, and
AlModarresi
,
S.
,
2013
, “
Online Adaptive Fuzzy Logic Controller Using Genetic Algorithm and Neural Network for Networked Control Systems
,”
15th International Conference on Advanced Communication Technology (ICACT)
, pp.
88
98
.
38.
Khan
,
M.
,
Choudhry
,
M.
, and
Zeeshan
,
M.
,
2013
, “
An Efficient Design of Genetic Algorithm Based Adaptive Fuzzy Logic Controller for Multivariable Control of HVAC Systems
,”
5th Computer Science and Electronic Engineering Conference (CEEC)
, pp.
1
6
.
39.
Djoewahir
,
A.
,
Tanaka
,
K.
, and
Nakashima
,
S.
,
2013
, “
Adaptive PSO-Based Self-Tuning PID Controller for Ultrasonic Motor
,”
Int. J. Innovative Comput. Inf. Control
,
9
(
10
), pp.
3903
3914
.
40.
Chiou
,
J.-S.
,
Tsai
,
S.-H.
, and
Liu
,
M.-T.
,
2012
, “
A PSO-Based Adaptive Fuzzy PID-Controllers
,”
Simulation Modell. Pract. Theory
,
26
, pp.
49
59
.
41.
Navale
,
R. L.
, and
Nelson
,
R. M.
,
2012
, “
Use of Genetic Algorithms and Evolutionary Strategies to Develop an Adaptive Fuzzy Logic Controller for a Cooling Coil Comparison of the AFLC With a Standard PID Controller
,”
Energy Build.
,
45
, pp.
169
180
.
42.
Bevrani
,
H.
,
Habibi
,
F.
,
Babahajyani
,
P.
,
Watanabe
,
M.
, and
Mitani
,
Y.
,
2012
, “
Intelligent Frequency Control in an ac Microgrid: Online PSO-Based Fuzzy Tuning Approach
,”
IEEE Trans. Smart Grid
,
3
(
4
), pp.
1935
1944
.
43.
Sahed
,
O.
,
Kara
,
K.
, and
Hadjili
,
M.
,
2012
, “
PSO-Based Fuzzy Predictive Control
,”
IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society
, pp.
2416
2421
.
44.
Navale
,
R. L.
, and
Nelson
,
R. M.
,
2010
, “
Use of Evolutionary Strategies to Develop an Adaptive Fuzzy Logic Controller for a Cooling Coil
,”
Energy Build.
,
42
(
11
), pp.
2213
2218
.
45.
Navale
,
R. L.
, and
Nelson
,
R. M.
,
2010
, “
Use of Genetic Algorithms to Develop an Adaptive Fuzzy Logic Controller for a Cooling Coil
,”
Energy Build.
,
42
(
5
), pp.
708
716
.
46.
Liu
,
B.-D.
,
Chen
,
C.-Y.
, and
Tsao
,
J.-Y.
,
2001
, “
Design of Adaptive Fuzzy Logic Controller Based on Linguistic-Hedge Concepts and Genetic Algorithms
,”
IEEE Trans. Syst. Man Cybern., Part B
,
31
(
1
), pp.
32
53
.
47.
Khan
,
M. W.
,
Choudhry
,
M. A.
,
Zeeshan
,
M.
, and
Ali
,
A.
,
2015
, “
Adaptive Fuzzy Multivariable Controller Design Based on Genetic Algorithm for an Air Handling Unit
,”
Energy
,
81
, pp.
477
488
.
48.
Hashim
,
H. A.
,
El-Ferik
,
S.
, and
Abido
,
M. A.
,
2015
, “
A Fuzzy Logic Feedback Filter Design Tuned With PSO for Adaptive Controller
,”
Expert Syst. Appl.
,
42
(
23
), pp.
9077
9085
.
49.
Hosovsky
,
A.
,
Michal
,
P.
,
Tothova
,
M.
, and
Biros
,
O.
,
2014
, “
Fuzzy Adaptive Control for Pneumatic Muscle Actuator With Simulated Annealing Tuning
,”
IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI)
, pp.
205
209
.
50.
Jain
,
A. K.
, and
Dubes
,
R. C.
,
1988
,
Algorithms for Clustering Data
,
Prentice-Hall
,
Upper Saddle River, NJ
.
51.
Bezdek
,
J.
,
1981
, “
Advanced Applications in Pattern Recognition
,”
Pattern Recognition With Fuzzy Objective Function Algorithms
,
Plenum Press
,
New York
.
52.
Bezdek
,
J. C.
,
Ehrlich
,
R.
, and
Full
,
W.
,
1984
, “
FCM: The Fuzzy C-means Clustering Algorithm
,”
Comput. Geosci.
,
10
(
2
), pp.
191
203
.
53.
Parsopoulos
,
K. E.
, and
Vrahatis
,
M. N.
,
2002
, “
Recent Approaches to Global Optimization Problems Through Particle Swarm Optimization
,”
Nat. Comput.
,
1
(
2–3
), pp.
235
306
.
54.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
, Vol.
16
,
Wiley
,
Hoboken, NJ
.
55.
Corrêa
,
M. V.
,
Aguirre
,
L.
, and
Saldanha
,
R. R.
,
2002
, “
Using Steady-State Prior Knowledge to Constrain Parameter Estimates in Nonlinear System Identification
,”
IEEE Trans. Circuits Syst. I
,
49
(
9
), pp.
1376
1381
.
56.
Aguirre
,
L.
,
Barroso
,
M.
,
Saldanha
,
R.
, and
Mendes
,
E.
,
2004
, “
Imposing Steady-State Performance on Identified Nonlinear Polynomial Models by Means of Constrained Parameter Estimation
,”
IEEE Proc. Control Theory Appl.
,
151
(
2
), pp.
174
179
.
57.
Wei
,
Y.
,
Qiu
,
J.
,
Karimi
,
H. R.
, and
Wang
,
M.
,
2014
, “
Model Reduction for Continuous-Time Markovian Jump Systems With Incomplete Statistics of Mode Information
,”
Int. J. Syst. Sci.
,
45
(
7
), pp.
1496
1507
.
You do not currently have access to this content.