This study presents the development of an embedded system for controlling a high-speed robotic manipulator. Three different types of controllers including hardware proportional derivative (PD), software PD, and single time scale visual servoing are considered in this study. Novel field programmable gate array (FPGA) technology was used for implementing the embedded system for faster execution speeds and parallelism. It is comprised of dedicated hardware and software modules for obtaining sensor feedback and control signal (CT) estimation, providing the control signal to the servovalves. A NIOS II virtual soft processor system was configured in the FPGA for implementing functions that are computationally expensive and difficult to implement in hardware. Quadrature decoding, serial peripheral interface (SPI) input and output modules, and control signal estimation in some cases was carried out using the dedicated hardware modules. The experiments show that the proposed controller performed satisfactory control of the end effector position. It performed single time scale visual servoing with control signal updates at 330 Hz to control the end effector trajectory at speeds of up to 0.8 ms−1. The FPGA technology also provided a more compact single chip implementation of the controller.

References

References
1.
Cho
,
J. U.
,
Le
,
Q. N.
, and
Jeon
,
J. W.
,
2009
, “
An FPGA Based Multiple-Axis Motion Control Chip
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
856
870
.
2.
Liyanage
,
M.
,
Krouglicof
,
N.
, and
Gosine
,
R.
,
2011
, “
Development and Testing of a Novel High Speed Scara Type Manipulator for Robotic Applications
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
3236
3242
.
3.
Monmasson
,
E.
, and
Cirstea
,
M.
,
2013
, “
Guest Editorial Special Section on Industrial Control Applications of FPGAs
,”
IEEE Trans. Ind. Inf.
,
9
(
3
), pp.
1250
1252
.
4.
Monmasson
,
E.
,
Idkhajine
,
L.
, and
Naouar
,
M.
,
2011
, “
FPGA-Based Controllers
,”
IEEE Ind. Electron. Mag.
,
5
(
1
), pp.
14
26
.
5.
Monmasson
,
E.
, and
Cirstea
,
M.
,
2007
, “
FPGA Design Methodology for Industrial Control Systems; A Review
,”
IEEE Trans. Ind. Electron.
,
54
(
4
), pp.
1824
1842
.
6.
Huang
,
H.-C.
, and
Tsai
,
C.-C.
,
2009
, “
FPGA Implementation of an Embedded Robust Adaptive Controller for Autonomous Omnidirectional Mobile Platform
,”
IEEE Trans. Ind. Electron.
,
56
(
5
), pp.
1604
1616
.
7.
Hu
,
J.-S.
,
Chang
,
N.-C.
,
Yang
,
J.-J.
,
Wang
,
J.-J.
,
Lossio
,
R.
,
Chien
,
M.-C.
,
Chang
,
Y.-J.
,
Kai
,
C.-Y.
, and
Su
,
S.-H.
,
2011
, “
FPGA-Based Embedded Visual Servoing Platform for Quick Response Visual Servoing
,”
8th Asian Control Conference (ASCC)
, pp.
263
268
.
8.
Chakravarthy
,
N.
, and
Xiao
,
J.
,
2006
, “
FPGA-Based Control System for Miniature Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
3399
3404
.
9.
Xiong
,
S.
, and
Bogy
,
D.
,
2014
, “
Hard Disk Drive Servo System Based on Field-Programmable Gate Arrays
,”
IEEE Trans. Ind. Electron.
,
61
(
9
), pp.
4878
4884
.
10.
Zhu
,
W.-H.
,
Lamarche
,
T.
,
Dupuis
,
E.
,
Jameux
,
D.
,
Barnard
,
P.
, and
Liu
,
G.
,
2013
, “
Precision Control of Modular Robot Manipulators: The VDC Approach With Embedded FPGA
,”
IEEE Trans. Rob.
,
29
(
5
), pp.
1162
1179
.
11.
Li
,
W.
,
Yadmellat
,
P.
, and
Kermani
,
M.
,
2015
, “
Linearized Torque Actuation Using FPGA-Controlled Magnetorheological Actuators
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
696
704
.
12.
Chan
,
Y. F.
,
Moallem
,
M.
, and
Wang
,
W.
,
2007
, “
Design and Implementation of Modular FPGA-Based PID Controllers
,”
IEEE Trans. Ind. Electron.
,
54
(
4
), pp.
1898
1906
.
13.
Zhou
,
Z.
,
Li
,
T.
,
Takahashi
,
T.
, and
Ho
,
E.
,
2004
, “
FPGA Realization of a High-Performance Servo Controller for PMSM
,”
19th Annual IEEE Applied Power Electronics Conference and Exposition (APEC'04)
, Vol.
3
, pp.
1604
1609
.
14.
Phuong
,
T. T.
,
Ohishi
,
K.
,
Yokokura
,
Y.
, and
Mitsantisuk
,
C.
,
2014
, “
FPGA Based High-Performance Force Control System With Friction-Free and Noise-Free Force Observation
,”
IEEE Trans. Ind. Electron.
,
61
(
2
), pp.
994
1008
.
15.
Alabdo
,
A.
,
Prez
,
J.
,
Pomares
,
J.
,
Garcia
,
G. J.
, and
Torres
,
F.
,
2015
, “
FPGA-based Framework for Dynamic Visual Servoing of Robot Manipulators
,”
IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA)
, pp.
1
8
.
16.
Xu
,
Q.
,
2015
, “
Robust Impedance Control of a Compliant Microgripper for High-Speed Position/Force Regulation
,”
IEEE Trans. Ind. Electron.
,
62
(
2
), pp.
1201
1209
.
17.
Liyanage
,
M. H.
, and
Krouglicof
,
N.
,
2014
, “
A Single Time Scale Visual Servoing System for a High Speed Scara Type Robotic Arm
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
4153
4160
.
18.
Lewis
,
E. L.
,
Abdallah
,
C.
, and
Dawson
,
D.
,
1993
,
Control of Robotic Manipulators
,
Macmillan Publishing Company
,
New York
.
19.
Krouglicof
,
N.
,
2004
, “
Implementing CPLD-Based Interfaces for Sensors and Actuators in a Mechatronic Design Course
,”
American Society for Engineering Education Annual Conference and Exposition
, Salt Lake City, UT, June 20–23, Session 1520.
20.
Hamamatsu
, 2015, “
S5991 Data Sheet
,” Hamamatsu, Hamamatsu City, Japan.
21.
Heikkila
,
J.
,
2000
, “
Geometric Camera Calibration Using Circular Control Points
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
10
), pp.
1066
1077
.
22.
Rahman
,
T.
, and
Krouglicof
,
N.
,
2012
, “
An Efficient Camera Calibration Technique Offering Robustness and Accuracy Over a Wide Range of Lens Distortion
,”
IEEE Trans. Image Process.
,
21
(
2
), pp.
626
637
.
You do not currently have access to this content.