Developing and parameterizing models that accurately predict the battery voltage and temperature in a vehicle battery pack are challenging due to the complex geometries of the airflow that influence the convective heat transfer. This paper addresses the difficulty in parameterizing low-order models which rely on coupling with finite element simulations. First, we propose a methodology to couple the parameterization of an equivalent circuit model (ECM) for both the electrical and thermal battery behavior with a finite element model (FEM) for the parameterization of the convective cooling of the airflow. In air-cooled battery packs with complex geometries and cooling channels, an FEM can provide the physics basis for the parameterization of the ECM that might have different convective coefficients between the cells depending on the airflow patterns. The second major contribution of this work includes validation of the ECM against the data collected from a three-cell fixture that emulates a segment of the pack with relevant cooling conditions for a hybrid vehicle. The validation is performed using an array of thin film temperature sensors covering the surface of the cell. Experiments with pulsing currents and drive cycles are used for validation over a wide range of operating conditions (ambient temperature, state of charge, current amplitude, and pulse width).

References

References
1.
Mandal
,
B. K.
,
Padhi
,
A. K.
,
Shi
,
Z.
,
Chakraborty
,
S.
, and
Filler
,
R.
,
2006
, “
Thermal Runaway Inhibitors for Lithium Battery Electrolytes
,”
J. Power Sources
,
161
(
2
), pp.
1341
1345
.
2.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.,
132
(1), pp. 5–12.
3.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(6), pp. 1526–1533.
4.
Fuller
,
T. F.
,
Doyle
,
M.
, and
Newman
,
J.
,
1994
, “
Simulation and Optimization of the Dual Lithium ion Insertion Cell
,”
J. Electrochem. Soc.
,
141
(1), pp. 1–10.
5.
Safari
,
M.
,
Morcrette
,
M.
,
Teyssot
,
A.
, and
Delacourta
,
C.
,
2009
, “
Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries
,”
J. Electrochem. Soc.
,
156
(3), pp. A145–A153.
6.
Lin
,
X.
,
Perez
,
H. E.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Li
,
Y.
,
Anderson
,
R. D.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2013
, “
Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1745
1755
.
7.
Murashko
,
K.
,
Pyrhonen
,
J.
, and
Laurila
,
L.
,
2013
, “
Three-Dimensional Thermal Model of a Lithium Ion Battery for Hybrid Mobile Working Machines: Determination of the Model Parameters in a Pouch Cell
,”
IEEE Trans. Energy Convers.
,
28
(
2
), pp.
335
343
.
8.
Einhorn
,
M.
,
Conte
,
F.
,
Kral
,
C.
, and
Fleig
,
J.
,
2013
, “
Comparison, Selection, and Parameterization of Electrical Battery Models for Automotive Applications
,”
IEEE Trans Power Electron.
,
28
(
3
), pp.
1429
1437
.
9.
Hu
,
Y.
,
Yurkovich
,
S.
,
Guezennec
,
Y.
, and
Yurkovich
,
B.
,
2011
, “
Electro-Thermal Battery Model Identification for Automotive Applications
,”
J. Power Sources
,
196
(
1
), pp.
449
457
.
10.
Lam
,
L.
,
Bauer
,
P.
, and
Kelder
,
E.
,
2011
, “
A Practical Circuit-Based Model for Li-Ion Battery Cells in Electric Vehicle Applications
,”
2011 IEEE 33rd International Telecommunications Energy Conference
(
INTELEC
), Oct. 9–13.
11.
Gao
,
L.
,
Liu
,
S.
, and
Dougal
,
R.
,
2002
, “
Dynamic Lithium-Ion Battery Model for System Simulation
,”
IEEE Transactions on Components and Packaging Technologies
,
25
(
3
), pp.
495
505
.
12.
Perez
,
H. E.
,
Siegel
,
J. B.
,
Lin
,
X.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2012
, “
Parameterization and Validation of an Integrated Electro-Thermal LFP Battery Model
,”
ASME
Paper No. DSCC2012-MOVIC2012-8782.
13.
Jung
,
S.
, and
Kang
,
D.
,
2014
, “
Multi-Dimensional Modeling of Large-Scale Lithium-Ion Batteries
,”
J. Power Sources
,
248
(
0
), pp.
498
509
.
14.
Smith
,
K.
,
Kim
,
G.-H.
,
Darcy
,
E.
, and
Pesaran
,
A.
,
2010
, “
Thermal/Electrical Modeling for Abuse-Tolerant Design of Lithium Ion Modules
,”
Int. J. Energy Res.
,
34
(
2
), pp.
204
215
.
15.
Fleckenstein
,
M.
,
Bohlen
,
O.
,
Roscher
,
M. A.
, and
Bker
,
B.
,
2011
, “
Current Density and State of Charge Inhomogeneities in Li-Ion Battery Cells With Lifepo4 as Cathode Material Due to Temperature Gradients
,”
J. Power Sources
,
196
(
10
), pp.
4769
4778
.
16.
Kim
,
Y.
,
Mohan
,
S.
,
Siegel
,
J. B.
, and
Stefanopoulou
,
A. G.
,
2013
, “
Maximum Power Estimation of Lithium-Ion Batteries Accounting for Thermal and Electrical Constraints
,”
ASME
Paper No. DSCC2013-3935.
17.
Chen
,
S.
,
Wan
,
C.
, and
Wang
,
Y.
,
2005
, “
Thermal Analysis of Lithium-Ion Batteries
,”
J. Power Sources
,
140
(
1
), pp.
111
124
.
18.
Inui
,
Y.
,
Kobayashi
,
Y.
,
Watanabe
,
Y.
,
Watase
,
Y.
, and
Kitamura
,
Y.
,
2007
, “
Simulation of Temperature Distribution in Cylindrical and Prismatic Lithium ion Secondary Batteries
,”
Energy Convers. Manage.
,
48
(
7
), pp.
2103
2109
.
19.
Samba
,
A.
,
Omar
,
N.
,
Gualous
,
H.
,
Firouz
,
Y.
,
den Bossche
,
P. V.
,
Mierlo
,
J. V.
, and
Boubekeur
,
T. I.
,
2014
, “
Development of an Advanced Two-Dimensional Thermal Model for Large Size Lithium-Ion Pouch Cells
,”
Electrochim. Acta
,
117
(
0
), pp.
246
254
.
20.
Gerver
,
R. E.
, and
Meyers
,
J. P.
,
2011
, “
Three-Dimensional Modeling of Electrochemical Performance and Heat Generation of Lithium-Ion Batteries in Tabbed Planar Configurations
,”
J. Electrochem. Soc.
,
158
(
7
), pp.
A835
A843
.
21.
Taheri
,
P.
, and
Bahrami
,
M.
,
2012
, “
Temperature Rise in Prismatic Polymer Lithium-Ion Batteries: An Analytic Approach
,”
SAE
Paper No. 2012-01-0334.
22.
Stefanopoulou
,
A. G.
,
Mohan
,
S. N.
,
Kim
,
Y.
, and
Siegel
,
J. B.
,
2016
, “
Bulk Force in a Battery Pack and Its Application to State of Charge Estimation
,”
U.S. Patent No. 2016/0064972 A1
.
23.
Peck
,
S.
,
Olszanski
,
T.
,
Zanardelli
,
S.
, and
Pierce
,
M.
,
2012
, “
Validation of a Thermal-Electric Li-Ion Battery Model
,”
SAE Int. J. Passeng. Cars Electron. Electr. Syst.
,
5
(
1
), pp.
154
163
.
24.
Kim
,
G.-H.
,
Smith
,
K.
,
Lee
,
K.-J.
,
Santhanagopalan
,
S.
, and
Pesaran
,
A.
,
2011
, “
Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
A955
A969
.
25.
Maleki
,
H.
,
Hallaj
,
S. A.
,
Selman
,
J. R.
,
Dinwiddie
,
R. B.
, and
Wang
,
H.
,
1999
, “
Thermal Properties of Lithium-Ion Battery and Components
,”
J. Electrochem. Soc.
,
146
(
3
), pp.
947
954
.
26.
Lin
,
X.
,
Perez
,
H. E.
,
Mohan
,
S.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2014
, “
A Lumped-Parameter Electro-Thermal Model for Cylindrical Batteries
,”
J. Power Sources
,
257
, pp.
1
11
.
27.
Hallaj
,
S. A.
,
Prakash
,
J.
, and
Selman
,
J.
,
2000
, “
Characterization of Commercial Li-Ion Batteries Using Electrochemical-Calorimetric Measurements
,”
J. Power Sources
,
87
(1), pp.
186
194
.
28.
Incropera
,
F.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.