In this paper, we develop an energy-focused model of an industrial roller hearth heat treating furnace. The model represents radiation heat transfer with nonparticipating gas and convective heat transfer. The model computes the exit temperature profile of the treated steel parts and the energy consumption and efficiency of the furnace. We propose a dual iterative numerical scheme to solve the conservation equations and validate its efficacy by simulating the dynamics of the furnace during startup, as well as for steady-state operation. A case study investigates energy consumption within the furnace under temperature control. We first consider a heuristic control strategy using simple linear controllers. A response surface approach is then used to find the optimal set points that minimize energy consumption while ensuring desired part temperature properties are met when processing is complete. With optimized set points, 4.8% less energy per part is required versus the heuristic set points.

References

References
1.
United States Energy Information Administration
,
2014
, “
Monthly Energy Review
,” EIA, Washington, DC, accessed Dec. 15,
2014
, http://www.eia.gov/totalenergy/data/monthly/
2.
Stones
,
E.
,
Ferland
,
K.
, and
Noack
,
M.
,
2007
, “
Industrial Efficiency
,” NPC Global Oil and Gas Study, accessed Dec. 25, 2016, http://www.npc.org/study_topic_papers/5-dtg-industrial-efficiency.pdf
3.
Viswanathan
,
V.
,
Davies
,
R.
, and
Holbery
,
J.
,
2005
, “
Opportunity Analysis for Recovering Energy From Industrial Waste Heat and Emissions
,” Pacific Northwest National Laboratory, Richland, WA.
4.
Pellegrino
,
J.
,
Margolis
,
N.
,
Justiniano
,
M.
,
Miller
,
M.
, and
Thekdi
,
A.
,
2004
, “
Energy Use, Loss and Opportunities Analysis
,” Energetics, Incorporated and E3M, Incorporated, Columbia, MD, accessed Dec. 25, 2016, https://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/energy_use_loss_opportunities_analysis.pdf
5.
Thekdi
,
A.
,
2010
, “
Energy Efficiency Improvement Opportunities in Process Heating for the Forging Industry
,” E3M, Canton, NY.
6.
Holcroft
,
A.
,
2014
, “
Conveyor Furnaces: Continuous Conveyor Thermal Treatment System
,” AFC-HOLCROFT, Wixom, MI, accessed Apr. 9,
2015
, http://www.afc-holcroft.com/userfiles/file/pdf/ConveyorFurnace_Brochure.pdf
7.
Ramamurthy
,
H.
,
Ramadhyani
,
S.
, and
Viskanta
,
R.
,
1995
, “
A Thermal System Model for a Radiant-Tube Continuous Reheating Furnace
,”
J. Mater. Eng. Perform.
,
4
(
5
), pp.
519
531
.
8.
Liao
,
Y.
,
Wu
,
M.
, and
She
,
J.
,
2006
, “
Modeling of Reheating-Furnace Dynamics Using Neural Network Based on Improved Sequential-Learning Algorithm
,” IEEE Computer Aided Control System Design, IEEE International Conference on Control Applications, IEEE International Symposium on Intelligent Control (
CACSD-CCA-ISIC
), Munich, Germany, Oct. 4–6, pp.
3175
3181
.
9.
Xuegang
,
S.
,
Chao
,
Y.
, and
Yihui
,
C.
,
2009
, “
Dynamic Modeling of Reheat-Furnace Using Neural Network Based on PSO Algorithm
,” 2009 International Conference on Mechatronics and Automation (
ICMA 2009
), Changchun, China, Aug. 9–12, pp.
3097
3101
.
10.
Kim
,
Y.
,
Moon
,
K.
,
Kang
,
B.
,
Han
,
C.
, and
Chang
,
K.
,
1998
, “
Application of Neural Network to the Supervisory Control of a Reheating Furnace in the Steel Industry
,”
Control Eng. Pract.
,
6
(
8
), pp.
1009
1014
.
11.
Laurinen
,
P.
, and
Röning
,
J.
,
2005
, “
An Adaptive Neural Network Model for Predicting the Post Roughing Mill Temperature of Steel Slabs in the Reheating Furnace
,”
J. Mater. Process. Technol.
,
168
(
3
), pp.
423
430
.
12.
Pan
,
J.
,
Li
,
Y.
, and
Li
,
D.
,
2002
, “
The Application of Computer Simulation in the Heat-Treatment Process of a Large-Scale Bearing Roller
,”
J. Mater. Process. Technol.
,
122
(
2
), pp.
241
248
.
13.
Tang
,
Y.
,
Laine
,
J.
,
Fabritus
,
T.
, and
Harkki
,
J.
,
2010
, “
Different Methods Obtained by PHOENICS Simulation to Improve the Performance of Pusher-Type Steel Slab Reheating Furnace
,” Oulu University, Oulu, Finland.
14.
Triebl
,
D.
,
Spijker
,
C.
,
Raupenstrauch
,
H.
,
Jarosik
,
A.
, and
Angeli
,
G.
,
2014
, “
CFD-Simulation Eines Direkt Befeuerten Ofens zur Vorbehandlung Feuerverzinkter Stahlbänder
,”
BHM Berg Hüttenmännische Monatsh.
,
159
(
7
), pp.
310
311
.
15.
Balbis
,
L.
,
Balderud
,
J.
, and
Grimble
,
M.
,
2008
, “
Nonlinear Predictive Control of Steel Slab Reheating Furnace
,” American Control Conference (
ACC
), Seattle, WA, June 11–13, pp.
1679
1684
.
16.
Yang
,
Y.
, and
Lu
,
Y.
,
1986
, “
Development of a Computer Control Model for Slab Reheating Furnaces
,”
Comput. Ind.
,
7
(
2
), pp.
145
154
.
17.
Steinboeck
,
A.
,
Wild
,
D.
,
Kiefer
,
T.
, and
Kugi
,
A.
,
2010
, “
A Mathematical Model of a Slab Reheating Furnace With Radiative Heat Transfer and Non-Participating Gaseous Media
,”
Int. J. Heat Mass Transfer
,
53
(
25
), pp.
5933
5946
.
18.
Yoshitani
,
N.
,
Ueyama
,
T.
, and
Usui
,
M.
,
1994
, “
Optimal Slab Heating Control With Temperature Trajectory Optimization
,”
20th International Conference on Industrial Electronics, Control and Instrumentation
(
IECON’94
), Bologna, Italy, Sept. 5–9, Vol. 3, pp.
1567
1572
.
19.
Mochida
,
A.
,
Kudo
,
K.
,
Mizutani
,
Y.
,
Hattori
,
M.
, and
Nakamura
,
Y.
,
1997
, “
Transient Heat Transfer Analysis in Vacuum Furnaces Heated by Radiant Tube Burners
,”
Energy Convers. Manage.
,
38
(
10
), pp.
1169
1176
.
20.
Kang
,
D.
,
Kim
,
Y.
,
Kim
,
Y.
,
Kim
,
W.
, and
Kim
,
K.
,
2007
,
Experimental and Numerical Studies on the Thermal Analysis of the Plate in Indirectly-Fired Continuous Heat Treatment Furnace
, Vol.
1988
,
VDI BERICHTE
, Dusseldorf, Germany, p.
533
.
21.
Pike
,
H.
, Jr.
, and
Citron
,
S.
,
1970
, “
Optimization Studies of a Slab Reheating Furnace
,”
Automatica
,
6
(
1
), pp.
41
50
.
22.
Yang
,
Y.
, and
Lu
,
Y.
,
1988
, “
Dynamic Model Based Optimization Control for Reheating Furnaces
,”
Comput. Ind.
,
10
(
1
), pp.
11
20
.
23.
Steinboeck
,
A.
,
Graichen
,
K.
, and
Kugi
,
A.
,
2011
, “
Dynamic Optimization of a Slab Reheating Furnace With Consistent Approximation of Control Variables
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1444
1456
.
24.
Chen
,
W.
,
Chung
,
Y.
, and
Liu
,
J.
,
2005
, “
Analysis on Energy Consumption and Performance of Reheating Furnaces in a Hot Strip Mill
,”
Int. Commun. Heat Mass Transfer
,
32
(
5
), pp.
695
706
.
25.
Han
,
S.
,
Chang
,
D.
, and
Huh
,
C.
,
2011
, “
Efficiency Analysis of Radiative Slab Heating in a Walking-Beam-Type Reheating Furnace
,”
Energy
,
36
(
2
), pp.
1265
1272
.
26.
Panjkovic
,
V.
, and
Gloss
,
R.
,
2012
, “
Fast Dynamic Heat and Mass Balance Model of Walking Beam Reheat Furnace With Two-Dimensional Slab Temperature Profile
,”
Ironmaking Steelmaking
,
39
(
3
), pp.
190
209
.
27.
Incropera
,
F.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
28.
Hottel
,
H. C.
, and
Sarofim
,
A. F.
,
1967
,
Radiative Transfer
,
McGraw-Hill
,
New York
, pp. 31–37.
29.
Niederer
,
M.
,
Strommer
,
S.
,
Steinboeck
,
A.
, and
Kugi
,
A.
,
2014
, “
A Simple Control-Oriented Model of an Indirect-Fired Strip Annealing Furnace
,”
Int. J. Heat Mass Transfer
,
78
, pp.
557
570
.
30.
Tiwari
,
M.
,
Mukhopadhyay
,
A.
, and
Sanyal
,
D.
,
2005
, “
Process Modeling for Control of a Batch Heat Treatment Furnace With Low NOx Radiant Tube Burner
,”
Energy Convers. Manage.
,
46
(
13
), pp.
2093
2113
.
31.
Chapra
,
S. C.
, and
Canale
,
R. P.
,
2012
,
Numerical Methods for Engineers
, Vol.
2
,
McGraw-Hill
, New York.
32.
Zhang
,
B.
,
Chen
,
Z.
,
Xu
,
L.
,
Wang
,
J.
,
Zhang
,
J.
, and
Shao
,
H.
,
2002
, “
The Modeling and Control of a Reheating Furnace
,”
2002 American Control Conference
, Anchorage, AK, May 8–10, Vol. 5, pp.
3823
3828
.
33.
Seborg
,
D.
,
Edgar
,
T.
, and
Mellichamp
,
D.
,
2004
,
Process Dynamics and Control
,
Wiley
, Hoboken, NJ.
34.
Badgwell
,
T.
,
Breedijk
,
T.
,
Bushman
,
S.
,
Butler
,
S.
,
Chatterjee
,
S.
,
Edgar
,
T.
,
Toprac
,
A.
, and
Trachtenberg
,
I.
,
1995
, “
Modeling and Control of Microelectronics Materials Processing
,”
Comput. Chem. Eng.
,
19
(
1
), pp.
1
41
.
35.
Myers
,
R.
,
Montgomery
,
D.
, and
Anderson-Cook
,
C.
,
2009
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
, Vol.
705
,
Wiley
, Hoboken, NJ.
36.
Cozad
,
A.
,
Sahinidis
,
N. V.
, and
Miller
,
D. C.
,
2014
, “
Learning Surrogate Models for Simulation-Based Optimization
,”
AIChE J.
,
60
(
6
), pp.
2211
2227
.
37.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc. Ser. B
,
58
(1), pp.
267
288
.
38.
Wächter
,
A.
, and
Biegler
,
L.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.
39.
Abbaschian
,
R.
, and
Reed-Hill
,
R.
,
2008
,
Physical Metallurgy Principles
,
Cengage Learning
, Stamford, CT.
You do not currently have access to this content.