In this work, a time-optimal trajectory generation approach is developed for the multiple way-point navigation of the quadrotor based on the nonuniform rational B-spline (NURBS) curve and linear programming. To facilitate this development, the dynamic model of the quadrotor is formulated first. Then, the geometric trajectory regarding multiple way-point navigation is constructed based on the NURBS curve. With the constructed geometric trajectory, a time-optimal interpolation problem is imposed considering the velocity, acceleration, and jerk constraints. This optimization problem is solved in two steps. In the first step, a preliminary result is obtained by solving a linear programming problem without jerk constraints. Then by introducing properly relaxed jerk constraints, a second linear programming problem is formulated based on the preliminarily obtained result, and the time-optimal problem can be fully solved in this way. Subsequently, a nonlinear trajectory tracking controller is developed to track the generated trajectory. The feasibilities of the proposed trajectory generation approach as well as the tracking controller are verified through both simulations and real-time experiments. With enhanced computational efficiency, the proposed approach can generate trajectory for an indoor environment with the smooth acceleration profile and moderate velocity V1 m/s in real-time, while guaranteeing velocity, acceleration, and jerk constraints: Vmax=1m/s,Amax=2m/s2, and Jmax=5m/s3. In such a case, the trajectory tracking controller can closely track the reference trajectory with cross-tracking error less than 0.05 m.

References

References
1.
Ijspeert
,
A. J.
,
2014
, “
Biorobotics: Using Robots to Emulate and Investigate Agile Locomotion
,”
Science
,
346
(
6206
), pp.
196
203
.
2.
Lindsey
,
Q.
,
Mellinger
,
D.
, and
Kumar
,
V.
,
2012
, “
Construction With Quadrotor Teams
,”
Auton. Rob.
,
33
(
3
), pp.
323
336
.
3.
Huang
,
P.-Y.
,
Zeng
,
L.-R.
,
Yang
,
C.
,
Peng
,
Y.-X.
, and
Yu
,
C.-B.
,
2014
, “
Design of a New Style Four-Axis Aerial Photography Aircraft for Disaster Relief
,”
J. Sichuan Ordnance
,
6
(1), p.
035
.
4.
Abdolhosseini
,
M.
,
Zhang
,
Y.
, and
Rabbath
,
C. A.
,
2013
, “
An Efficient Model Predictive Control Scheme for an Unmanned Quadrotor Helicopter
,”
J. Intell. Rob. Syst.
,
70
(
1–4
), pp.
27
38
.
5.
Lim
,
H.
,
Park
,
J.
,
Lee
,
D.
, and
Kim
,
H.
,
2012
, “
Build Your Own Quadrotor: Open-Source Projects on Unmanned Aerial Vehicles
,”
IEEE Rob. Autom. Mag.
,
19
(
3
), pp.
33
45
.
6.
Doyle
,
C. E.
,
Bird
,
J. J.
,
Isom
,
T. A.
,
Kallman
,
J. C.
,
Bareiss
,
D. F.
,
Dunlop
,
D. J.
,
King
,
R. J.
,
Abbott
,
J. J.
, and
Minor
,
M.
,
2013
, “
An Avian-Inspired Passive Mechanism for Quadrotor Perching
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
506
517
.
7.
Ding
,
X.
, and
Yu
,
Y.
,
2013
, “
Motion Planning and Stabilization Control of a Multipropeller Multifunction Aerial Robot
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
645
656
.
8.
Muller
,
M.
,
Lupashin
,
S.
, and
D'Andrea
,
R.
,
2011
, “
Quadrocopter Ball Juggling
,” IEEE
International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
5113
5120
.
9.
Dong
,
W.
,
Gu
,
G.-Y.
,
Zhu
,
X.
, and
Ding
,
H.
,
2015
, “
Solving the Boundary Value Problem of an Under-Actuated Quadrotor With Subspace Stabilization Approach
,”
J. Intell. Rob. Syst.
,
80
(
2
), pp.
299
311
.
10.
Dong
,
W.
,
Gu
,
G.-Y.
,
Ding
,
Y.
,
Xiangyang
,
Z.
, and
Ding
,
H.
,
2015
, “
Ball Juggling With an Under-Actuated Flying Robot
,” IEEE/RSJ
International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
68
73
.
11.
Hehn
,
M.
, and
D'Andrea
,
R.
,
2011
, “
A Flying Inverted Pendulum
,” IEEE
International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
763
770
.
12.
Bezzo
,
N.
,
Griffin
,
B.
,
Cruz
,
P.
,
Donahue
,
J.
,
Fierro
,
R.
, and
Wood
,
J.
,
2014
, “
A Cooperative Heterogeneous Mobile Wireless Mechatronic System
,”
IEEE/ASME Trans. Mechatronics
,
19
(
1
), pp.
20
31
.
13.
Mellinger
,
D.
, and
Kumar
,
V.
,
2011
, “
Minimum Snap Trajectory Generation and Control for Quadrotors
,” IEEE
International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
2520
2525
.
14.
Kumar
,
V.
, and
Michael
,
N.
,
2012
, “
Opportunities and Challenges With Autonomous Micro Aerial Vehicles
,”
Int. J. Rob. Res.
,
31
(
11
), pp.
1279
1291
.
15.
Huang
,
H.
,
Hoffmann
,
G. M.
,
Waslander
,
S. L.
, and
Tomlin
,
C. J.
,
2009
, “
Aerodynamics and Control of Autonomous Quadrotor Helicopters in Aggressive Maneuvering
,” IEEE
International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
3277
3282
.
16.
Cutler
,
M.
, and
How
,
J. P.
,
2015
, “
Analysis and Control of a Variable-Pitch Quadrotor for Agile Flight
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
10
), p.
101002
.
17.
Do
,
K. D.
,
2015
, “
Path-Tracking Control of Stochastic Quadrotor Aircraft in Three-Dimensional Space
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
10
), p.
101003
.
18.
Goodarzi
,
F. A.
,
Lee
,
D.
, and
Lee
,
T.
,
2015
, “
Geometric Adaptive Tracking Control of a Quadrotor Unmanned Aerial Vehicle on se (3) for Agile Maneuvers
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
9
), p.
091007
.
19.
Dong
,
W.
,
Gu
,
G.-Y.
,
Zhu
,
X.
, and
Ding
,
H.
,
2014
, “
High-Performance Trajectory Tracking Control of a Quadrotor With Disturbance Observer
,”
Sens. Actuators A
,
211
, pp.
67
77
.
20.
Cichella
,
V.
,
Kaminer
,
I.
,
Dobrokhodov
,
V.
,
Xargay
,
E.
,
Choe
,
R.
,
Hovakimyan
,
N.
,
Aguiar
,
A. P.
, and
Pascoal
,
A. M.
,
2015
, “
Cooperative Path Following of Multiple Multirotors Over Time-Varying Networks
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
3
), pp.
945
957
.
21.
Mellinger
,
D.
,
Michael
,
N.
, and
Kumar
,
V.
,
2012
, “
Trajectory Generation and Control for Precise Aggressive Maneuvers With Quadrotors
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
664
674
.
22.
Mueller
,
M. W.
,
Hehn
,
M.
, and
D'Andrea
,
R.
,
2013
, “
A Computationally Efficient Algorithm for State-to-State Quadrocopter Trajectory Generation and Feasibility Verification
,” IEEE
International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–8, pp.
3480
3486
.
23.
Bangura
,
M.
, and
Mahony
,
R.
,
2012
, “
Nonlinear Dynamic Modeling for High Performance Control of a Quadrotor
,”
Australasian Conference on Robotics and Automation
, Wellington, New Zealand, Dec. 3–5.
24.
Hehn
,
M.
, and
D'Andrea
,
R.
,
2011
, “
Quadrocopter Trajectory Generation and Control
,”
IFAC World Congress
,
44
(1), pp.
1485
1491
.
25.
Bouktir
,
Y.
,
Haddad
,
M.
, and
Chettibi
,
T.
,
2008
, “
Trajectory Planning for a Quadrotor Helicopter
,”
Mediterranean Conference on the Control and Automation
(
MED
), Ajaccio, France, June 25–27, pp.
1258
1263
.
26.
Cowling
,
I.
,
2008
, “
Towards Autonomy of a Quadrotor UAV
,”
Ph.D. thesis
, Cranfield University, Bedfordshire, UK.
27.
Dong
,
W.
,
Gu
,
G.
,
Zhu
,
X.
, and
Ding
,
H.
,
2015
, “
Development of a Quadrotor Test Bed–Modelling, Parameter Identification, Controller Design and Trajectory Generation
,”
Int. J. Adv. Rob. Syst.
,
12
(1), p.
7
.
28.
Nuske
,
S.
,
Choudhury
,
S.
,
Jain
,
S.
,
Chambers
,
A.
,
Yoder
,
L.
,
Scherer
,
S.
,
Chamberlain
,
L.
,
Cover
,
H.
, and
Singh
,
S.
,
2015
, “
Autonomous Exploration and Motion Planning for an Unmanned Aerial Vehicle Navigating Rivers
,”
J. Field Rob.
,
32
(
8
), pp.
1141
1162
.
29.
Droeschel
,
D.
,
Nieuwenhuisen
,
M.
,
Beul
,
M.
,
Holz
,
D.
,
Stückler
,
J.
, and
Behnke
,
S.
,
2016
, “
Multilayered Mapping and Navigation for Autonomous Micro Aerial Vehicles
,”
J. Field Rob.
33
(
4
), pp.
451
475
.
30.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2011
, “
Sampling-Based Algorithms for Optimal Motion Planning
,”
Int. J. Rob. Res.
,
30
(
7
), pp.
846
894
.
31.
Burri
,
M.
,
Oleynikova
,
H.
,
Achtelik
,
M.
, and
Siegwart
,
R.
,
2015
, “
Real-Time Visual-Inertial Mapping, Re-Localization and Planning Onboard Mavs in Unknown Environments
,” IEEE/RSJ
International Conference on Intelligent Robots and Systems
(
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
1872
1878
.
32.
Richter
,
C.
,
Bry
,
A.
, and
Roy
,
N.
,
2013
, “
Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments
,” Robotics Research, Springer, Berlin, pp. 649–666.
33.
Hoffmann
,
G. M.
,
Waslander
,
S. L.
, and
Tomlin
,
C. J.
,
2008
, “
Quadrotor Helicopter Trajectory Tracking Control
,”
AIAA
Paper No. 2008-7410.
34.
Mathew
,
N.
,
Smith
,
S. L.
, and
Waslander
,
S. L.
,
2014
, “
Optimal Path Planning in Cooperative Heterogeneous Multi-Robot Delivery Systems
,”
Workshop on the Algorithmic Foundations of Robotics
, Istanbul, Turkey, pp. 407–423.
35.
Kuo
,
C.
,
Kuo
,
C.
,
Leber
,
A.
, and
Boller
,
C.
,
2013
, “
Vector Thrust Multi-Rotor Copter and Its Application for Building Inspection
,”
International Micro Air Vehicle Conference and Flight Competition
, Toulouse, France, Sept. 17–20.
36.
Benson
,
D. A.
,
Huntington
,
G. T.
,
Thorvaldsen
,
T. P.
, and
Rao
,
A. V.
,
2006
, “
Direct Trajectory Optimization and Costate Estimation Via an Orthogonal Collocation Method
,”
J. Guid. Control Dyn.
,
29
(
6
), pp.
1435
1440
.
37.
Basset
,
G.
,
Xu
,
Y.
, and
Li
,
N.
,
2013
, “
Fast Trajectory Planning Via the b-Spline Augmented Virtual Motion Camouflage Approach
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
5
), p.
054505
.
38.
Wang
,
H.
, and
Zou
,
Q.
,
2014
, “
B-Spline-Decomposition-Based Approach to Multiaxis Trajectory Tracking: Nanomanipulation Example
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1573
1580
.
39.
Murray
,
R. M.
,
Li
,
Z.
,
Sastry
,
S. S.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
40.
Dydek
,
Z. T.
,
Annaswamy
,
A. M.
, and
Lavretsky
,
E.
,
2013
, “
Adaptive Control of Quadrotor UAVS: A Design Trade Study With Flight Evaluations
,”
IEEE Trans. Autom. Sci. Eng.
,
21
(
4
), pp.
1400
1406
.
41.
Bouabdallah
,
S.
,
Murrieri
,
P.
, and
Siegwart
,
R.
,
2004
, “
Design and Control of an Indoor Micro Quadrotor
,” IEEE
International Conference on Robotics and Automation
(
ICRA
), New Orleans, LA, Apr. 26–May 1, Vol.
5
, pp.
4393
4398
.
42.
Fan
,
W.
,
Gao
,
X.-S.
,
Lee
,
C.-H.
,
Zhang
,
K.
, and
Zhang
,
Q.
,
2013
, “
Time-Optimal Interpolation for Five-Axis CNC Machining Along Parametric Tool Path Based on Linear Programming
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1373
1388
.
43.
Zhou
,
J.
,
Sun
,
Y.
, and
Guo
,
D.
,
2014
, “
Adaptive Feedrate Interpolation With Multiconstraints for Five-Axis Parametric Toolpath
,”
Int. J. Adv. Manuf. Technol.
,
71
(
9–12
), pp.
1873
1882
.
44.
Heng
,
M. M.-T.
,
2008
, “
Smooth and Time-Optimal Trajectory Generation for High Speed Machine Tools
,” Master's thesis, University of Waterloo, Waterloo, ON, Canada.
45.
Wu
,
J.
,
Zhou
,
H.
,
Tang
,
X.
, and
Chen
,
J.
,
2012
, “
A NURBS Interpolation Algorithm With Continuous Feedrate
,”
Int. J. Adv. Manuf. Technol.
,
59
(5), pp.
623
632
.
46.
Megiddo
,
N.
,
1984
, “
Linear Programming in Linear Time When the Dimension Is Fixed
,”
J. ACM
,
31
(
1
), pp.
114
127
.
47.
Best
,
M. J.
, and
Chakravarti
,
N.
,
1990
, “
Active Set Algorithms for Isotonic Regression: A Unifying Framework
,”
Math. Program.
,
47
(
1–3
), pp.
425
439
.
48.
Hom
,
R. A.
, and
Johnson
,
C. R.
,
1991
,
Topics in Matrix Analysis
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.