This paper considers the problem of finite-time disturbance observer (FTDO) design and the problem of FTDO based finite-time control for systems subject to nonvanishing disturbances. First of all, based on the homogeneous systems theory and saturation technique, a continuous FTDO design approach is proposed. Then, by using the proposed FTDO design approach, a FTDO is constructed to estimate the disturbances that exist in a rigid spacecraft system. Furthermore, based on a baseline finite-time control law and a feedforward compensation term produced by the FTDO, a composite controller is constructed for the rigid spacecraft system. It is shown that the proposed composite controller will render the rigid spacecraft track the desired attitude trajectory in a finite-time. Simulation results are included to demonstrate the effectiveness of the proposed control approach.

References

References
1.
Chen
,
Z.
, and
Huang
,
J.
,
2009
, “
Attitude Tracking and Disturbance Rejection of Rigid Spacecraft by Adaptive Control
,”
IEEE Trans. Autom. Control
,
54
(
3
), pp.
600
635
.
2.
Du
,
H.
,
Li
,
S.
, and
Qian
,
C.
,
2011
, “
Finite-Time Attitude Tracking Control of Spacecraft With Application to Attitude Synchronization
,”
IEEE Trans. Autom. Control
,
56
(
11
), pp.
2711
2717
.
3.
Hu
,
Q.
, and
Jiang
,
B.
,
2014
, “
Robust Saturated Finite-Time Output Feedback Attitude Stabilization for Rigid Spacecraft
,”
J. Guid. Control Dyn.
,
37
(
6
), pp.
1914
1929
.
4.
Feng
,
Y.
,
Yu
,
X.
, and
Man
,
Z.
,
2002
, “
Non-Singular Terminal Sliding Mode Control of Rigid Manipulators
,”
Automatica
,
38
(
12
), pp.
2159
2167
.
5.
Chen
,
W.
,
2004
, “
Disturbance Observer-Based Control for Nonlinear Systems
,”
IEEE/ASME Trans. Mechatronics
,
9
(
4
), pp.
706
710
.
6.
Umeno
,
T.
, and
Hori
,
Y.
,
1991
, “
Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-Freedom Controller Design
,”
IEEE Trans. Ind. Electron.
,
38
(
5
), pp.
363
368
.
7.
Ohishi
,
K.
,
Nakao
,
M.
,
Ohnishi
,
K.
, and
Miyachi
,
K.
,
1987
, “
Microprocessor-Controller DC Motor for Load-Insensive Position Servo System
,”
IEEE Trans. Ind. Electron.
,
34
(
1
), pp.
44
49
.
8.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.
9.
Li
,
S.
,
Yang
,
J.
,
Chen
,
W.
, and
Chen
,
X.
,
2014
,
Disturbance Observer-Based Control Methods and Applications
,
CRC Press
, Boca Raton, FL.
10.
Yang
,
J.
,
Chen
,
W.
, and
Li
,
S.
,
2011
, “
Non-Linear Disturbance Observer-Based Robust Control for Systems With Mismatched Disturbances/Uncertainties
,”
IET Control Theory Appl.
,
5
(
18
), pp.
2053
2062
.
11.
She
,
J.
,
Xin
,
X.
, and
Pan
,
Y.
,
2011
, “
Equivalent-Input-Disturbance Approach–Analysis and Application to Disturbance Rejection in Dual-Stage Feed Drive Control Systems
,”
IEEE/ASME Trans. Mechatronics
,
16
(
2
), pp.
330
340
.
12.
Chen
,
W.
,
2003
, “
Harmonic Disturbance Observer for Nonlinear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
125
(
1
), pp.
114
117
.
13.
Guo
,
L.
, and
Chen
,
W.
,
2005
, “
Disturbance Attenuation and Rejection for Systems With Nonlinearity via DOBC Approach
,”
Int. J. Robust Nonlinear Control
,
15
(
3
), pp.
109
125
.
14.
Levant
,
A.
,
2003
, “
Higher-Order Sliding Modes, Differentiation and Output-Feedback Control
,”
Int. J. Control
,
76
(
9
), pp.
924
941
.
15.
Wang
,
X.
,
Chen
,
Z.
, and
Yang
,
G.
,
2007
, “
Finite-Time-Convergent Differentiator Based on Singular Perturbation Technique
,”
IEEE Trans. Autom. Control
,
52
(
9
), pp.
1731
1737
.
16.
Guo
,
B.
, and
Zhao
,
Z.
,
2013
, “
Weak Convergence of Nonlinear High-Gain Tracking Differentiator
,”
IEEE Trans. Autom. Control
,
58
(
4
), pp.
1074
1080
.
17.
Li
,
S.
,
Yang
,
J.
,
Chen
,
W.
, and
Chen
,
X.
,
2012
, “
Generalized Extended State Observer-Based Control for Systems With Mismatched Uncertainties
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4792
4802
.
18.
Huang
,
Y.
, and
Xue
,
W.
,
2014
, “
Active Disturbance Rejection Control: Methodology and Theoretical Analysis
,”
ISA Trans.
,
53
(
4
), pp.
963
976
.
19.
Zhao
,
S.
, and
Gao
,
Z.
,
2014
, “
Modified Active Disturbance Rejection Control for Time Delay Systems
,”
ISA Trans.
,
53
(
4
), pp.
882
888
.
20.
Lan
,
Q.
,
Li
,
S.
,
Khoo
,
S.
, and
Shi
,
P.
,
2015
, “
Global Finite-Time Stabilisation for a Class of Stochastic Nonlinear Systems by Output Feedback
,”
Int. J. Control
,
88
(
3
), pp.
494
506
.
21.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
1998
, “
Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators
,”
IEEE Trans. Autom. Control
,
43
(
5
), pp.
678
682
.
22.
Ding
,
S.
,
Levant
,
A.
, and
Li
,
S.
,
2016
, “
Simple Homogeneous Sliding-Mode Controller
,”
Automatica
,
67
(
5
), pp.
22
32
.
23.
Wang
,
N.
,
Qian
,
C.
,
Sun
,
J.
, and
Liu
,
Y.
,
2016
, “
Adaptive Robust Finite-Time Trajectory Tracking Control of Fully Actuated Marine Surface Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
24
(
4
), pp.
1454
1462
.
24.
Sun
,
Z.
,
Xue
,
L.
, and
Zhang
,
K.
,
2015
, “
A New Approach to Finite-Time Adaptive Stabilization of High-Order Uncertain Nonlinear System
,”
Automatica
,
58
(
8
), pp.
60
66
.
25.
Shtessel
,
Y.
,
Shkolnikov
,
I.
, and
Levant
,
A.
,
2007
, “
Smooth Second-Order Sliding Modes: Missile Guidance Application
,”
Automatica
,
43
(
8
), pp.
1470
1476
.
26.
Huang
,
X.
,
Lin
,
W.
, and
Yang
,
B.
,
2005
, “
Global Finite-Time Stabilization of a Class of Uncertain Nonlinear Systems
,”
Automatica
,
41
(
5
), pp.
881
888
.
27.
Shen
,
Y.
, and
Huang
,
Y.
,
2009
, “
Uniformly Observable and Globally Lipschitzian Nonlinear Systems Admit Global Finite-Time Observers
,”
IEEE Trans. Autom. Control
,
54
(
11
), pp.
2621
2625
.
28.
Qian
,
C.
, and
Gong
,
Q.
,
2013
, “
Global Output Feedback Stabilization of a Class of Nonlinear Systems With Multiple Output
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
4
), p.
044502
.
29.
Hong
,
Y.
,
Jiang
,
Z.
, and
Feng
,
G.
,
2010
, “
Finite-Time Input-to-State Stability and Applications to Finite-Time Control Design
,”
SIAM J. Control Optim.
,
48
(
7
), pp.
4395
4418
.
30.
Ding
,
S.
,
Wang
,
J.
, and
Zheng
,
W.
,
2015
, “
Second-Order Sliding Mode Control for Nonlinear Uncertain Systems Bounded by Positive Functions
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5899
5909
.
31.
Qian
,
C.
,
2005
, “
A Homogeneous Domination Approach for Global Output Feedback Stabilization of a Class of Nonlinear Systems
,”
American Control Conference
, pp.
4708
4715
.
32.
Qian
,
C.
, and
Lin
,
W.
,
2001
, “
A Continuous Feedback Approach to Global Strong Stabilization of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
46
(
7
), pp.
1061
1079
.
33.
Lei
,
H.
,
Wei
,
J.
, and
Lin
,
W.
,
2007
, “
A Global Observer for Autonomous Systems With Bounded Trajectories
,”
Int. J. Robust Nonlinear Control
,
17
(
12
), pp.
1088
1105
.
34.
Lan
,
Q.
,
Li
,
S.
,
Yang
,
J.
, and
Sun
,
H.
,
2015
, “
Finite-Time Control for 6DOF Spacecraft Formation Flying System
,”
J. Aerosp. Eng.
,
28
(
5
), p.
040140137
.
35.
Shuster
,
M. D.
,
1993
, “
A Survey of Attitude Representations
,”
J. Astronaut. Sci.
,
41
(
4
), pp.
439
517
.
36.
Li
,
J.
,
Qian
,
C.
, and
Frye
,
M.
,
2009
, “
A Dual-Observer Design for Global Output Feedback Stabilization of Nonlinear Systems With Low-Order and High-Order Nonlinearities
,”
Int. J. Robust Nonlinear Control
,
19
(
15
), pp.
1697
1720
.
37.
Menard
,
T.
,
Moulay
,
E.
, and
Perruquetii
,
W.
,
2010
, “
A Global High-Gain Finite-Time Observer
,”
IEEE Trans. Autom. Control
,
55
(
6
), pp.
1500
1506
.
38.
Xing
,
G. Q.
, and
Parvez
,
S. A.
,
2001
, “
Nonlinear Attitude State Tracking Control for Spacecraft
,”
J. Guid. Control Dyn.
,
24
(
3
), pp.
624
626
.
You do not currently have access to this content.