New generation of torque converter automatic transmissions (ATs) include a large number of gears for improved fuel economy and performance. Control requirements for such a transmission become more demanding, which calls for the development of new shift control optimization tools. A pseudospectral collocation method is used in the paper to optimize AT clutch and engine control trajectories for comfortable and efficient shifts. Since the optimization method requires a smooth formulation of plant model, the emphasized clutch model nonlinearity around the zero slip speed has been found to be a major difficulty to be resolved through proper modeling of the optimization problem. Therefore, different approaches of describing the friction behavior are considered and assessed, starting from simple static models, through dynamics models, toward torque-source approaches subject to the clutch passivity constraint. Apart from the conventional optimization approach based on minimizing the cost function (including the vehicle jerk and clutch energy loss terms), the so-called feasibility approach based on restricting the cost through an inequality constraint is considered, as well. The proposed optimization method has been verified on a characteristic example of 10-speed AT for both single- and double-transition shifts (DTSs). It has been found out that the clutch passivity constraint-based approach results in numerically most efficient optimizations for a wide range of shift tasks and scenarios.

References

References
1.
Marano
,
J.
,
Moorman
,
S.
,
Czoykowski
,
J.
, and
Ghike
,
C.
,
2011
, “
Automatic Transmission Rotational Inertia Effect on Shift Quality
,”
SAE
Technical Paper No. 2011-01-0393.
2.
Lee
,
S.
,
Zhang
,
Y.
,
Jung
,
D.
, and
Lee
,
B.
,
2014
, “
A Systematic Approach for Dynamic Analysis of Vehicles With Eight or More Speed Automatic Transmission
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
5
), p.
051008
.
3.
Haj-Fraj
,
A.
, and
Pfeiffer
,
F.
,
2001
, “
Optimal Control of Gear Shift Operations in Automatic Transmissions
,”
J. Franklin Inst.
,
338
(
2–3
), pp.
371
390
.
4.
Deur
,
J.
,
Asgari
,
J.
,
Hrovat
,
D.
, and
Kovač
,
P.
,
2006
, “
Modeling and Analysis of Automatic Transmission Engagement Dynamics-Linear Case
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
2
), pp.
263
277
.
5.
Marano
,
J. E.
,
Moorman
,
S. P.
,
Whitton
,
M. D.
, and
Williams
,
R. L.
,
2007
, “
Clutch-to-Clutch Transmission Control Strategy
,”
SAE
Technical Paper No. 2007-01-1313.
6.
Bai
,
S.
,
Maguire
,
J. M.
, and
Peng
,
H.
,
2013
,
Dynamic Analysis and Control System Design of Automatic Transmissions
, SAE International, Warrendale, PA.
7.
Fujii
,
Y.
,
Asgari
,
J.
,
Hrovat
,
D.
,
Jiang
,
H.
,
Pietron
,
G. M.
,
Riedle
,
B.
,
Teslak
,
C. J.
, and
Tseng
,
H. E.
,
2012
, “
Ratio Shift Control System and Method for a Multiple-Ratio Automatic Transmission
,”
U.S. Patent No. 8,328,688
.
8.
Hebbale
,
K.
,
2009
, “
Dynamic Analysis and Simulation of Driveability and Control of a Double Transition Shifting System
,” 2009
IEEE
Vehicle Power and Propulsion Conference
, Sept. 7–10, IEEE, Dearborn, MI, pp.
348
353
.
9.
Kahlbau
,
S.
, and
Bestle
,
D.
,
2013
, “
Optimal Shift Control for Automatic Transmission
,”
Mech. Based Des. Struct. Mach.
,
41
(
3
), pp.
259
273
.
10.
Wurm
,
M. S. A.
, and
Bestle
,
D.
,
2013
, “
New Approach for Transmission Calibration—Model-Based Multi-Objective Optimization Via SIL
,”
7th International Symposium and Exhibition
, Innovative Automotive Transmissions, Hybrid & Electric Drives.
11.
von Stryk
,
O.
, and
Bulirsch
,
R.
,
1992
, “
Direct and Indirect Methods for Trajectory Optimization
,”
Ann. Oper. Res.
,
37
(
1
), pp.
357
373
.
12.
Rao
,
A.
,
2014
, “
Trajectory Optimization: A Survey
,”
Optimization and Optimal Control in Automotive Systems
, Vol.
455
,
H.
Waschl
,
I.
Kolmanovsky
,
M.
Steinbuch
, and
L.
del Re
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
3
21
.
13.
Graham
,
K. F.
, and
Rao
,
A. V.
,
2015
, “
Minimum-Time Trajectory Optimization of Multiple Revolution Low-Thrust Earth-Orbit Transfers
,”
J. Spacecr. Rockets
,
52
(
3
), pp.
711
727
.
14.
Limebeer
,
D. J. N.
,
Perantoni
,
G.
, and
Rao
,
A. V.
,
2014
, “
Optimal Control of Formula One Car Energy Recovery Systems
,”
Int. J. Control
,
87
(
10
), pp.
2065
2080
.
15.
Xu
,
S.
,
Li
,
S. E.
,
Deng
,
K.
,
Li
,
S.
, and
Cheng
,
B.
,
2015
, “
A Unified Pseudospectral Computational Framework for Optimal Control of Road Vehicles
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp.
1499
1510
.
16.
Deur
,
J.
,
Čorić
,
M.
,
Kasać
,
J.
,
Assadian
,
F.
, and
Hrovat
,
D.
,
2014
, “
Applications of Computational Optimal Control to Vehicle Dynamics
,”
Optimization and Optimal Control in Automotive Systems
, Vol.
455
,
H.
Waschl
,
I.
Kolmanovsky
,
M.
Steinbuch
, and
L.
del Re
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
131
146
.
17.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
De Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.
18.
Astrom
,
K. J.
, and
Canudas-de-Wit
,
C.
,
2008
, “
Revisiting the LuGre Friction Model
,”
IEEE Control Syst.
,
28
(
6
), pp.
101
114
.
19.
Rutquist
,
P. E.
, and
Edvall
,
M. M.
,
2010
, “
PROPT—Matlab Optimal Control Software
,”
Tomlab Optimization
, Vasteras, Sweden.
20.
Čorić
,
M.
,
Deur
,
J.
,
Kasać
,
J.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2016
, “
Optimization of Active Suspension Control Inputs for Improved Vehicle Handling Performance
,”
Veh. Syst. Dyn.
,
54
(11), pp. 1574–1600.
21.
Čorić
,
M.
,
Deur
,
J.
,
Xu
,
L.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2016
, “
Optimization of Active Suspension Control Inputs for Improved Vehicle Ride Performance
,”
Veh. Syst. Dyn.
,
54
(
7
), pp.
1004
1030
.
22.
Goleski
,
G. D.
, and
Baldwin
,
R. A.
,
2013
, “
Multi-Speed Transmission
,”
U.S. Patent No. 8,545,362
.
23.
Ranogajec
,
V.
,
Deur
,
J.
, and
Čorić
,
M.
,
2016
, “
Bond Graph Analysis of Automatic Transmission Shifts Including Potential of Extra Clutch Control
,”
SAE
Paper No. 2016-01-1146.
24.
Hrovat
,
D.
,
Asgari
,
J.
, and
Fodor
,
M.
,
2000
, “
Automotive Mechatronic Systems
,”
Mechatronic Systems, Techniques and Applications
,
C. T.
Leondes
, ed.,
Gordon and Breach Science Publishers
,
Newark, NJ
, pp.
1
98
.
25.
Deur
,
J.
,
Ivanović
,
V.
,
Hancock
,
M.
, and
Assadian
,
F.
,
2010
, “
Modeling and Analysis of Active Differential Dynamics
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
6
), p.
061501
.
26.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
1990
,
System Dynamics: A Unified Approach
,
Wiley
,
New York
.
27.
Hrovat
,
D.
, and
Tobler
,
W. E.
,
1985
, “
Bond Graph Modeling and Computer Simulation of Automotive Torque Converters
,”
J. Franklin Inst.
,
319
(
1–2
), pp.
93
114
.
28.
Umemura
,
Y.
, and
Sakamoto
,
N.
,
2015
, “
Optimal Servo Design for Lock-Up Slip Control for Torque Converter—Nonlinear Output Regulation Approach
,”
IEEE Trans. Control Syst. Technol.
,
23
(
4
), pp.
1587
1593
.
29.
Hrovat
,
D.
, and
Tobler
,
W. E.
,
1991
, “
Bond Graph Modeling of Automotive Power Trains
,”
J. Franklin Inst.
,
328
(
5–6
), pp.
623
662
.
30.
Ranogajec
,
V.
, and
Deur
,
J.
,
2016
, “
An Automated Model-Order Reduction Method for Advanced Automatic Transmissions
,”
ASME J. Dyn. Syst., Meas., Control
(accepted).
31.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
100
103
.
32.
Dahl
,
P. R.
,
1968
, “
A Solid Friction Model
,” The Aerospace Corporation, El Segundo, CA,
Report No. SAMSO-TR-77-131
.
33.
Deur
,
J.
,
Asgari
,
J.
, and
Hrovat
,
D.
,
2004
, “
A 3D Brush-Type Dynamic Tire Friction Model
,”
Veh. Syst. Dyn.
,
42
(
3
), pp.
133
173
.
34.
Betts
,
J. T.
,
2001
,
Practical Methods for Optimal Control Using Nonlinear Programming
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
35.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2002
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM J. Optim.
,
12
(
4
), pp.
979
1006
.
36.
Boyd
,
S. P.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
, Cambridge, UK.
37.
Cormen
,
T. H.
,
Leiserson
,
C. E.
,
Rivest
,
R. L.
, and
Stein
,
C.
,
2001
,
Introduction to Algorithms
,
MIT Press
, Cambridge, MA.
38.
Fu
,
Y. X.
,
Cui
,
L. Y.
,
Xu
,
X. Y.
, and
Dong
,
P.
,
2014
, “
Analysis of Dynamic Characteristics of Automatic Transmission Shifting Control
,”
Appl. Mech. Mater.
,
643
, pp.
42
47
.
You do not currently have access to this content.