Electrohydrostatic actuators (EHAs), as a class of pump-controlled hydraulic actuators, are known for energy efficiency and easy maintainability. Thus, they can be widely used in the situations where actuating pressure/force control of hydraulic actuators is essential. Examples are automotive active suspension, deep-drawing press, molding machine, and vibration isolation. However, a leaky piston seal in an EHA system can be especially problematic as it is not visually detectable, but causes internal leakage flowing across actuator chambers impairing the performance. This paper employs quantitative feedback theory (QFT) to design a robust fixed-gain linear actuating pressure controller that is tolerant to actuator internal leakage. Since QFT captures uncertainties by templates, representing frequency responses of the plant on Nichols chart, the first step, to design a QFT controller, is to establish plant templates. In doing so, a set of offline parametric system identifications are implemented, and the family of identified models, providing frequency responses, are used to design the QFT fault-tolerant controller. The controller also satisfies the prescribed design tolerances on tracking, stability and sensitivity (disturbance rejection at plant output) under different conditions, including various levels of actuator internal leakage, environmental stiffnesses, and load masses. The ability of the controller to maintain actuating pressure within the acceptable response envelope is demonstrated in experiments. The experimental results show that the system specifications are satisfied despite internal leakage up to 12 L/min.

References

References
1.
Niksefat
,
N.
,
Sepehri
,
N.
, and
Wu
,
Q.
,
2007
, “
Design and Experimental Evaluation of a QFT Contact Task Controller for Electro-Hydraulic Actuators
,”
Int. J. Robust Nonlinear Control
,
17
(
2–3
), pp.
225
250
.
2.
Choi
,
J.
,
2013
, “
Robust Position Control of Electro-Hydrostatic Actuator Systems With Radial Basis Function Neural Networks
,”
J. Adv. Mech. Des. Syst. Manuf.
,
7
(
2
), pp.
257
267
.
3.
Alleyne
,
A.
, and
Liu
,
R.
,
2000
, “
A Simplified Approach to Force Control for Electro-Hydraulic Systems
,”
Control Eng. Pract.
,
8
(
12
), pp.
1347
1356
.
4.
Truong
,
D. Q.
, and
Ahn
,
K. K.
,
2009
, “
Force Control for Hydraulic Load Simulator Using Self-Tuning Grey Predictor–Fuzzy PID
,”
Mechatronics
,
19
(
2
), pp.
233
246
.
5.
Komsta
,
J.
,
Oijen
,
N. V.
, and
Antoszkiewicz
,
P.
,
2013
, “
Integral Sliding Mode Compensator for Load Pressure Control of Die-Cushion Cylinder Drive
,”
Control Eng. Pract.
,
21
(
5
), pp.
708
718
.
6.
Tan
,
H.-Z.
, and
Sepehri
,
N.
,
2002
, “
Parametric Fault Diagnosis for Electrohydraulic Cylinder Drive Units
,”
IEEE Trans. Ind. Electron.
,
49
(
1
), pp.
96
106
.
7.
Gao
,
Y.
,
Zhang
,
Q.
, and
Kong
,
X.
,
2003
, “
Wavelet-Based Pressure Analysis for Hydraulic Pump Health Diagnosis
,”
Trans. ASAE
,
46
(
4
), pp.
969
976
.
8.
Mao
,
Z.
,
Jiang
,
B.
, and
Shi
,
P.
,
2011
, “
Observer-Based Fault-Tolerant Control for a Class of Networked Control Systems With Transfer Delays
,”
J. Franklin Inst.
,
348
(
4
), pp.
763
776
.
9.
Hao
,
L.-Y.
, and
Yang
,
G.-H.
,
2013
, “
Robust Fault Tolerant Control Based on Sliding Mode Method for Uncertain Linear Systems With Quantization
,”
ISA Trans.
,
52
(
5
), pp.
600
610
.
10.
Mendonca
,
L. F.
,
Sousa
,
J. M. C.
, and
Sá da Costa
,
J. M. G.
,
2012
, “
Fault Tolerant Control Using a Fuzzy Predictive Approach
,”
Expert Systems with Applications
,
39
(
12
), pp.
10630
10638
.
11.
Houpis
,
C. H.
, and
Rasmussen
,
S. J.
,
1999
,
Quantitative Feedback Theory Fundamentals and Applications
,
Marcel Dekker
,
New York
.
12.
Yaniv
,
O.
,
1999
,
Quantitative Feedback Design of Linear and Nonlinear Control Systems
,
Kluwer Academic Publishers
,
Norwell, MA
.
13.
Niksefat
,
N.
, and
Sepehri
,
N.
,
2002
, “
A QFT Fault-Tolerant Control for Electrohydraulic Positioning Systems
,”
IEEE Trans. Control Syst. Technol.
,
10
(
4
), pp.
626
632
.
14.
Niksefat
,
N.
, and
Sepehri
,
N.
,
2001
, “
Designing Robust Force Control of Hydraulic Actuators Despite System and Environmental Uncertainties
,”
IEEE Control Syst. Mag.
,
21
(
2
), pp.
66
77
.
15.
Keating
,
M. S.
,
Pachter
,
M.
, and
Houpis
,
C. H.
,
1997
, “
Fault Tolerant Flight Control System: QFT Design
,”
Int. J. Robust Nonlinear Control
,
7
(
6
), pp.
551
559
.
16.
Wu
,
S.-F.
,
Grimble
,
M. J.
, and
Wei
,
W.
,
1999
, “
QFT Based Robust/Fault Tolerant Flight Control Design for a Remote Pilotless Vehicle
,”
IEEE International Conference on Control Applications
, pp.
57
62
.
17.
Karpenko
,
M.
, and
Sepehri
,
N.
,
2003
, “
Robust Position Control of an Electrohydraulic Actuator With a Faulty Actuator Piston Seal
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
3
), pp.
413
423
.
18.
Karpenko
,
M.
, and
Sepehri
,
N.
,
2005
, “
Fault-Tolerant Control of a Servohydraulic Positioning System With Crossport Leakage
,”
IEEE Trans. Control Syst. Technol.
,
13
(
1
), pp.
155
161
.
19.
Karpenko
,
M.
, and
Sepehri
,
N.
,
2010
, “
Quantitative Fault Tolerant Control Design for a Leaking Hydraulic Actuator
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
5
), pp.
626
634
.
20.
Ren
,
G.
,
Esfandiari
,
M.
,
Song
,
J.
, and
Sepehri
,
N.
,
2016
, “
Position Control of an Electrohydrostatic Actuator With Tolerance to Internal Leakage
,”
IEEE Trans. Control Syst. Technol.
,
24
(
6
), pp.
2224
2232
.
21.
Chen
,
L.
, and
Liu
,
S.
,
2010
, “
Fault Diagnosis Integrated Fault-Tolerant Control for a Nonlinear Electro-Hydraulic System
,”
IEEE International Conference on Control Applications
, pp.
1039
1044
.
22.
Ahn
,
K. K.
, and
Dinh
,
Q. T.
,
2009
, “
Self-Tuning of Quantitative Feedback Theory for Force Control of an Electro-Hydraulic Test Machine
,”
Control Eng. Pract.
,
17
(
11
), pp.
1291
1306
.
23.
Truong
,
D. Q.
, and
Ahn
,
K. K.
,
2009
, “
Self-Tuning Quantitative Feedback Theory for Parallel Force/Position Control of Electro-Hydrostatic Actuators
,”
Proc. Inst. Mech. Eng., Part I
,
223
(
4
), pp.
537
556
.
24.
Tischler
,
M. B.
, and
Remple
,
R. K.
,
2006
,
Aircraft and Rotorcraft System Identification: Engineering Methods With Flight Test Examples
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
25.
Adiprawita
,
W.
,
Ahmad
,
A. S.
, and
Sembiring
,
J.
,
2007
, “
Automated Flight Test and System Identification for Rotary Wing Small Aerial Platform Using Frequency Responses Analysis
,”
J. Bionic Eng.
,
4
(
4
), pp.
237
244
.
26.
Niño
,
J.
,
Mitrache
,
F.
,
Cosyn
,
P.
, and
Keyser
,
R. D.
,
2007
, “
Model Identification of a Micro Air Vehicle
,”
J. Bionic Eng.
,
4
(
4
), pp.
227
236
.
27.
Banazadeh
,
A.
, and
Ghorbani
,
M. T.
,
2013
, “
Frequency Domain Identification of the Nomoto Model to Facilitate Kalman Filter Estimation and PID Heading Control of a Patrol Vessel
,”
Ocean Eng.
,
72
, pp.
344
355
.
28.
Habibi
,
S.
, and
Goldenberg
,
A.
,
2000
, “
Design of a New High-Performance Electrohydraulic Actuator
,”
IEEE/ASME Trans. Mechatronics
,
5
(
2
), pp.
158
164
.
29.
Skormin
,
V. A.
, and
Apone
,
J.
,
1995
, “
On-Line Diagnostics of a Variable Displacement Pump of a Flight Actuation System
,”
IEEE National Aerospace and Electronics Conference
, pp.
503
510
.
30.
Chinniah
,
Y. A.
,
2004
, “
Fault Detection in the Electrohydraulic Actuator Using Extended Kalman Filter
,” Ph.D. thesis, Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
You do not currently have access to this content.