A method is presented for tip-over stability analysis of a wheeled mobile manipulator. A wheeled mobile manipulator may tip over resulting from its operation. In this study, first a Newton–Euler formulation is applied to formulate the manipulator’s reaction forces and moments exerted onto the mobile platform. Tip-over criterion is derived to judge the system stability. Three load and motion analyses are carried on. The first static load deals with links and payload to show the effect of the horizontal position of the system’s center of gravity (CG). The second and third are the inertial forces resulting from joint speeds and accelerations, respectively. Case study is path planning with tip-over criterion result which can make the system stable along the path. The simulation results demonstrate the effectiveness of the proposed method.

References

References
1.
Liu
,
Y.
, and
Liu
,
G.
,
2010
, “
Interaction Analysis and Online Tip-Over Avoidance for a Reconfigurable Tracked Mobile Modular Manipulator Negotiating Slopes
,”
IEEE/ASME Trans. Mechatronics
,
15
(
4
), pp.
623
635
.
2.
Korayem
,
M. H.
,
Shafei
,
A. M.
, and
Shafei
,
H. R.
,
2012
, “
Dynamic Modeling of Nonholonomic Wheeled Mobile Manipulators With Elastic Joints Using Recursive Gibbs–Appell Formulation
,”
Sci. Iran.
,
19
(
4
), pp.
1092
1104
.
3.
Chen
,
M. W.
, and
Zalzala
,
A. M. S.
,
1997
, “
Dynamic Modeling and Genetic-Based Trajectory Generation for Non-Holonomic Mobile Manipulators
,”
Control Eng. Pract.
,
5
(
1
), pp.
39
48
.
4.
Vysin
,
M.
, and
Knoflicek
,
R.
,
2003
, “
The Hybrid Mobile Robot
,”
2003 IEEE International Conference on Industrial Technology
, pp.
262
264
.
5.
Korayem
,
M. H.
,
Shafei
,
A. M.
, and
Seidi
,
E.
,
2014
, “
Symbolic Derivation of Governing Equations for Dual-Arm Mobile Manipulators Used in Fruit-Picking and the Pruning of Tall Trees
,”
Comput. Electron. Agric.
,
105
, pp.
95
102
.
6.
Tsai
,
C. C.
,
Cheng
,
M. B.
, and
Lin
,
S. C.
,
2006
, “
Dynamic Modeling and Tracking Control of a Nonholonomic Wheeled Mobile Manipulator With Dual Arms
,”
J. Intell. Rob. Syst.
,
47
(
4
), pp.
317
340
.
7.
Tang
,
C. P.
,
Miller
,
P. T.
,
Krovi
,
V. N.
,
Ryu
,
J.-C.
, and
Agrawal
,
S. K.
,
2011
, “
Differential-Flatness-Based Planning and Control of a Wheeled Mobile Manipulator-Theory and Experiment
,”
IEEE/ASME Trans. Mechatronics
,
16
(
4
), pp.
768
773
.
8.
Chitta
,
S.
,
Cohen
,
B.
, and
Likhachev
,
M.
,
2010
, “
Planning for Autonomous Door Opening With a Mobile Manipulator
,”
IEEE
International Conference on Robotics and Automation
, pp.
1799
1806
.
9.
Jiao
,
J.
,
Cao
,
Z.
,
Zhao
,
P.
,
Liu
,
X.
, and
Tan
,
M.
,
2013
, “
Bezier Curve Based Path Planning for a Mobile Manipulator in Unknown Environments
,”
IEEE
International Conference on Robotics and Biomimetics
, Qingdao, China, Dec. 12–14, pp.
1864
1868
.
10.
Li
,
Y.
, and
Liu
,
Y.
,
2005
, “
Kinematics and Tip-Over Stability Analysis for the Mobile Modular Manipulator
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
3
), pp.
331
343
.
11.
Papadopoulos
,
E. G.
, and
Rey
,
D. A.
,
1996
, “
A New Measure of Tipover Stability Margin for Mobile Manipulators
,”
IEEE
International Conference on Robotics and Automation
, pp.
3111
3116
.
12.
Ghasempoor
,
A.
, and
Sepehri
,
N.
,
1995
, “
A Measure of Machine Stability for Moving Base Manipulators
,”
IEEE
International Conference on Robotics and Automation
, pp.
2249
2254
.
13.
Rey
,
D. A.
, and
Papadopoulos
,
E. G.
,
1997
, “
On-Line Automatic Tipover Prevention for Mobile Manipulators
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
1273
1278
.
14.
Moosavian
,
S. A. A.
, and
Alipour
,
K.
,
2006
, “
Moment-Height Tip-Over Measure for Stability Analysis of Mobile Robotic Systems
,”
IEEE
International Conference on Intelligent Robots and Systems
, pp.
5546
5551
.
15.
Ali
,
S.
,
Moosavian
,
A.
, and
Alipour
,
K.
,
2007
, “
Tip-Over Stability of Suspended Wheeled Mobile Robots
,”
IEEE
International Conference on Mechatronics and Automation
, pp.
1356
1361
.
16.
Liu
,
Y.
, and
Liu
,
G.
,
2009
, “
Track—Stair Interaction Analysis and Online Tipover Prediction for a Self-Reconfigurable Tracked Mobile Robot Climbing Stairs
,”
IEEE/ASME Trans. Mechatronics
,
14
(
5
), pp.
528
538
.
17.
Sugano
,
S.
,
Huang
,
Q.
, and
Kato
,
I.
,
1993
, “
Stability Criteria in Controlling Mobile Robotic Systems
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Vol. 2, pp.
832
838
.
18.
Korayem
,
M. H.
,
Azimirad
,
V.
,
Nikoobin
,
A.
, and
Boroujeni
,
Z.
,
2010
, “
Maximum Load-Carrying Capacity of Autonomous Mobile Manipulator in an Environment With Obstacle Considering Tip Over Stability
,”
Int. J. Adv. Manuf. Technol.
,
46
(
5–8
), pp.
811
829
.
19.
Moubarak
,
P.
, and
Ben-Tzvi
,
P.
,
2013
, “
A Globally Converging Algorithm for Adaptive Manipulation and Trajectory Following for Mobile Robots With Serial Redundant Arms
,”
Robotica
,
31
(
08
), pp.
1299
1311
.
20.
Xi
,
F. F.
,
2009
, “
Computational Dynamics
,” Graduate Course Lecture Notes, Ryerson University, Toronto, ON, Canada.
21.
Bianco
,
G. L.
,
2009
, “
Evaluation of Generalized Force Derivatives by Means of a Recursive Newton–Euler Approach
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
954
959
.
22.
Song
,
T.
,
Xi
,
F.
,
Guo
,
S.
, and
Lin
,
Y.
,
2016
, “
Optimization of a Mobile Platform for a Wheeled Manipulator
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061007
.
You do not currently have access to this content.