This research study performs an observability analysis of the relative localization problem related to multirobotic systems. The study considers different constraints related to the availability of relative position measurements and platform velocity measurements. Constraints related to these measurement sources arise due to several reasons such as, sensing limitations especially in aerial platforms, field of view limitations of sensors, and communication bandwidth limitations that may affect the available measurement rate. Although numerous observability studies are reported for localization of multirobot systems, most of these studies do not investigate the problem under constraints related to platform velocity sensing capabilities, and moreover, these do not investigate the global uniqueness of its results. This paper analyzes observability of the relative localization problem in detail for multiple practical scenarios having limited measurement sources and then extends the study with a global uniqueness analysis of the results. The paper establishes theoretical limitations and design recommendations relevant to relative localization frameworks, which are validated through numerical and experimental evaluations using a multirobot system equipped with relative positioning sensors.

References

References
1.
Franchi
,
A.
,
Oriolo
,
G.
, and
Stegagno
,
P.
,
2013
, “
Mutual Localization in Multi-Robot Systems Using Anonymous Relative Measurements
,”
Int. J. Rob. Res.
,
32
(
11
), pp.
1302
1322
.
2.
Cognetti
,
M.
,
Stegagno
,
P.
,
Franchi
,
A.
,
Oriolo
,
G.
, and
Bülthoff
,
H. H.
,
2012
, “
3-D Mutual Localization With Anonymous Bearing Measurements
,”
IEEE
International Conference on Robotics and Automation
, May 14–18, pp.
791
798
.
3.
Mariottini
,
G. L.
,
Morbidi
,
F.
,
Prattichizzo
,
D.
,
Pappas
,
G. J.
, and
Daniilidis
,
K.
,
2007
, “
Leader–Follower Formations: Uncalibrated Vision-Based Localization and Control
,”
IEEE
International Conference on Robotics and Automation
, Apr. 10–14, pp.
10
14
.
4.
Michael
,
N.
,
Shen
,
S.
,
Mohta
,
K.
,
Mulgaonkar
,
Y.
,
Kumar
,
V.
,
Nagatani
,
K.
,
Okada
,
Y.
,
Kiribayashi
,
S.
,
Otake
,
K.
,
Yoshida
,
K.
,
Ohno
,
K.
,
Takeuchi
,
E.
, and
Tadokoro
,
S.
,
2012
, “
Collaborative Mapping of an Earthquake-Damaged Building Via Ground and Aerial Robots
,”
J. Field Rob.
,
29
(
5
), pp.
832
841
.
5.
De Silva
,
O.
,
Mann
,
G. K. I.
, and
Gosine
,
R. G.
,
2015
, “
An Ultrasonic and Vision-Based Relative Positioning Sensor for Multirobot Localization
,”
IEEE Sens. J.
,
15
(
3
), pp.
1716
1726
.
6.
Blackman
,
S.
, and
Popoli
,
R.
,
1999
,
Design and Analysis of Modern Tracking Systems
,
Artech House
, Boston.
7.
Abeywardena
,
D.
,
Kodagoda
,
S.
,
Dissanayake
,
G.
, and
Munasinghe
,
R.
,
2013
, “
Improved State Estimation in Quadrotor MAVs: A Novel Drift-Free Velocity Estimator
,”
IEEE Rob. Autom. Mag.
, 20(4), pp.
32
39
.
8.
De Silva
,
O.
,
Mann
,
G. K. I.
, and
Gosine
,
R. G.
,
2012
, “
Development of a Relative Localization Scheme for Ground-Aerial Multi-Robot Systems
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Oct. 7–12, pp.
870
875
.
9.
Mehrez
,
M. W.
,
Mann
,
G. K. I.
, and
Gosine
,
R. G.
,
2014
, “
Nonlinear Moving Horizon State Estimation for Multi-Robot Relative Localization
,”
Canadian Conference on Electrical and Computer Engineering
, May 4–7.
10.
De Silva
,
O.
,
Mann
,
G. K. I.
, and
Gosine
,
R. G.
,
2014
, “
Relative Localization With Symmetry Preserving Observers
,”
Canadian Conference on Electrical and Computer Engineering
, (
CCECE
), May 4–7.
11.
Martinelli
,
A.
, and
Siegwart
,
R.
,
2005
, “
Observability Analysis for Mobile Robot Localization
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Aug. 2–6, pp.
1471
1476
.
12.
Trawny
,
N.
,
Zhou
,
X. S.
,
Zhou
,
K.
, and
Roumeliotis
,
S. I.
,
2010
, “
Interrobot Transformations in 3-D
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
226
243
.
13.
Martinelli
,
A.
,
Pont
,
F.
, and
Siegwart
,
R.
,
2005
, “
Multi-Robot Localization Using Relative Observations
,”
IEEE
International Conference on Robotics and Automation
, Apr. 18–22, pp.
2797
2802
.
14.
Cristofaro
,
A.
, and
Martinelli
,
A.
,
2011
, “
3D Cooperative Localization and Mapping: Observability Analysis
,”
American Control Conference
, San Francisco, CA, June 29–July 1, pp.
1630
1635
.
15.
De Silva
,
O.
,
Mann
,
G. K. I.
, and
Gosine
,
R. G.
,
2015
, “
Efficient Distributed Multi-Robot Localization: A Target Tracking Inspired Design
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), May 26–30, pp.
434
439
.
16.
Achtelik
,
M.
,
Zhang
,
T.
,
Kühnlenz
,
K.
, and
Buss
,
M.
,
2009
, “
Visual Tracking and Control of a Quadcopter Using a Stereo Camera System and Inertial Sensors
,”
International Conference on Mechatronics and Automation
, Aug. 9–12, pp.
2863
2869
.
17.
Roberts
,
J. F.
,
Stirling
,
T.
,
Zufferey
,
J.-C.
, and
Floreano
,
D.
,
2012
, “
3-D Relative Positioning Sensor for Indoor Flying Robots
,”
Auton. Rob.
,
33
(
1–2
), pp.
5
20
.
18.
De Silva
,
O.
,
Mann
,
G. K. I.
, and
Gosine
,
R. G.
,
2014
, “
Pairwise Observable Relative Localization in Ground Aerial Multi-Robot Networks
,”
European Control Conference
(
ECC
), June 24–27, pp.
324
329
.
19.
Hermann
,
R.
, and
Krener
,
A. J.
,
1977
, “
Nonlinear Controllability and Observability
,”
IEEE Trans. Autom. Control
,
22
(
5
), pp.
728
740
.
20.
Markley
,
F. L.
,
2003
, “
Attitude Error Representations for Kalman Filtering
,”
J. Guid., Control, Dyn.
,
26
(
2
), pp.
311
317
.
21.
Mahony
,
R.
,
Hamel
,
T.
, and
Pflimlin
,
J.-M.
,
2008
, “
Nonlinear Complementary Filters on the Special Orthogonal Group
,”
IEEE Trans. Autom. Control
,
53
(
5
), pp.
1203
1218
.
22.
De Silva
,
O.
,
Mann
,
G. K. I.
, and
Gosine
,
R. G.
, “
The Right Invariant Nonlinear Complementary Filter for Low Cost Attitude and Heading Estimation of Platforms
,” e-print arXiv:1611.10346.
23.
Suksakulchai
,
S.
,
Thongchai
,
S.
,
Wilkes
,
D.
, and
Kawamura
,
K.
,
2000
, “
Mobile Robot Localization Using an Electronic Compass for Corridor Environment
,”
IEEE
International Conference on Systems
, Man, and Cybernetics, Oct. 8–11, pp.
3354
3359
.
24.
von der Hardt
,
H.-J.
,
Philippe
,
A.
,
Wolf
,
D.
, and
Dufaut
,
M.
,
1994
, “
A Method of Mobile Robot Localisation by Fusion of Odometric and Magnetometric Data
,”
Int. J. Adv. Manuf. Technol.
,
9
(
1
), pp.
65
69
.
25.
Shen
,
S.
,
Michael
,
N.
, and
Kumar
,
V.
,
2011
, “
Autonomous Multi-Floor Indoor Navigation With a Computationally Constrained MAV
,”
IEEE
International Conference on Robotics and Automation
, May 9–13, pp.
20
25
.
26.
Farrell
,
J.
,
2008
,
Aided Navigation: GPS With High Rate Sensors
,
McGraw-Hill
,
New York
.
27.
Martin
,
P.
, and
Salaün
,
E.
,
2010
, “
The True Role of Accelerometer Feedback in Quadrotor Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), pp.
1623
1629
.
You do not currently have access to this content.