In comparison control performance with more complex and nonlinear control methods, the classical linear controller is poor because of the nonlinear uncertainty action that the continuously variable transmission (CVT) system is operated by the synchronous reluctance motor (SynRM). Owing to good learning skill online, a blend amended recurrent Gegenbauer-functional-expansions neural network (NN) control system was developed to return to the nonlinear uncertainties behavior. The blend amended recurrent Gegenbauer-functional-expansions NN control system can fulfill overseer control, amended recurrent Gegenbauer-functional-expansions NN control with an adaptive dharma, and recompensed control with a reckoned dharma. In addition, according to the Lyapunov stability theorem, the adaptive dharma in the amended recurrent Gegenbauer-functional-expansions NN and the reckoned dharma of the recompensed controller are established. Furthermore, an altered artificial bee colony optimization (ABCO) yields two varied learning rates for two parameters to find two optimal values, which helped improve convergence. Finally, the experimental results with various comparisons are demonstrated to confirm that the proposed control system can result in better control performance.

References

References
1.
Xu
,
L.
, and
Yao
,
J.
,
1992
, “
A Compensated Vector Control Scheme of a Synchronous Reluctance Motor Including Saturation and Iron Losses
,”
IEEE Trans. Ind. Appl.
,
28
(
6
), pp.
1330
1338
.
2.
Betz
,
R. E.
,
Lagerquist
,
R.
,
Jovanovic
,
M.
,
Miller
,
T. J. E.
, and
Middleton
,
R. H.
,
1993
, “
Control of Synchronous Reluctance Machines
,”
IEEE Trans. Ind. Appl.
,
29
(
6
), pp.
1110
1122
.
3.
Uezato
,
K.
,
Senjyu
,
T.
, and
Tomori
,
Y.
,
1994
, “
Modeling and Vector Control of Synchronous Reluctance Motors Including Stator Iron Loss
,”
IEEE Trans. Ind. Appl.
,
30
(
4
), pp.
971
976
.
4.
Matsuo
,
T.
,
Antably
,
A. E.
, and
Lipo
,
T. A.
,
1997
, “
A New Control Strategy for Optimum-Efficiency Operation of a Synchronous Reluctance Motor
,”
IEEE Trans. Ind. Appl.
,
33
(
5
), pp.
1146
1153
.
5.
Rashad
,
E. M.
,
Radwan
,
T. S.
, and
Rahman
,
M. A.
,
2004
, “
A Maximum Torque Per Ampere Vector Control Strategy for Synchronous Reluctance Motors Considering Saturation and Iron Losses
,”
IEEE Industry Applications Conference
, Seattle, WA, Oct. 3–7, pp.
2411
2417
.
6.
Lin
,
C. H.
,
2012
, “
Adaptive Recurrent Wavelet Network Uncertainty Observer Based on Integral Backstepping Control for a SynRM Drive System
,”
Int. Rev. Electr. Eng.
,
7
(
4
), pp.
4867
4878
.
7.
Tseng
,
C. Y.
,
Lue
,
Y. F.
,
Lin
,
Y. T.
,
Siao
,
J. C.
,
Tsai
,
C. H.
, and
Fu
,
L. M.
,
2009
, “
Dynamic Simulation Model for Hybrid Electric Scooters
,”
IEEE International Symposium on Industrial Electronics
, Seoul, Korea, July 5–8, pp.
1464
1469
.
8.
Guzzella
,
L.
, and
Schmid
,
A. M.
,
1995
, “
Feedback Linearization of Spark-Ignition Engines With Continuously Variable Transmissions
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
54
58
.
9.
Kim
,
W.
, and
Vachtsevanos
,
G.
,
2000
, “
Fuzzy Logic Ratio Control for a CVT Hydraulic Module
,”
IEEE Symposium on Intelligent Control
, Rio, Greece, July 19, pp.
151
156
.
10.
Carbone
,
G.
,
Mangialardi
,
L.
,
Bonsen
,
B.
,
Tursi
,
C.
, and
Veenhuizen
,
P. A.
,
2007
, “
CVT Dynamics: Theory and Experiments
,”
Mech. Mach. Theory
,
42
(
4
), pp.
409
428
.
11.
Srivastava
,
N.
, and
Haque
,
I.
,
2008
, “
Transient Dynamics of Metal V-Belt CVT: Effects of Bandpack Slip and Friction Characteristic
,”
Mech. Mach. Theory
,
43
(
4
), pp.
457
479
.
12.
Srivastava
,
N.
, and
Haque
,
I.
,
2009
, “
A Review on Belt and Chain Continuously Variable Transmissions (CVT): Dynamics and Control
,”
Mech. Mach. Theory
,
44
(
1
), pp.
19
41
.
13.
Lin
,
C. H.
,
2015
, “
Composite Recurrent Laguerre Orthogonal Polynomials Neural Network Dynamic Control for Continuously Variable Transmission System Using Altered Particle Swarm Optimization
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1219
1245
.
14.
Lin
,
C. H.
,
2015
, “
Application of V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Laguerre Orthogonal Polynomials Neural Network Control System and Modified Particle Swarm Optimization
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051019
.
15.
Park
,
B. S.
,
2015
, “
Neural Network-Based Tracking Control of Underactuated Autonomous Underwater Vehicles With Model Uncertainties
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
2
), p.
021004
.
16.
Lungu
,
R.
,
Sepcu
,
L.
, and
Lungu
,
M.
,
2015
, “
Four-Bar Mechanism's Proportional-Derivative and Neural Adaptive Control for the Thorax of the Micromechanical Flying Insects
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
5
), p.
051005
.
17.
Gao
,
S.
,
Dong
,
H.
,
Lyu
,
S.
, and
Ning
,
B.
,
2015
, “
Truncated Adaptation Design for Decentralized Neural Dynamic Surface Control of Interconnected Nonlinear Systems Under Input Saturation
,”
Int. J. Control
,
89
(
7
), pp.
1
29
.
18.
Gao
,
S.
,
Dong
,
H.
,
Ning
,
B.
, and
Sun
,
X.
,
2015
, “
Neural Adaptive Control for Uncertain MIMO Systems With Constrained Input Via Intercepted Adaptation and Single Learning Parameter Approach
,”
Nonlinear Dyn.
,
82
(
3
), pp.
1109
1126
.
19.
Ye
,
J.
,
2005
, “
Analog Compound Orthogonal Neural Network Control of Robotic Manipulators
,”
Proc. SPIE 6042, ICMIT: Control Systems and Robotics
, Chongqing, China, Sept. 20, p.
60422L
.
20.
Ye
,
J.
, and
Zhao
,
Y.
,
2006
, “
Application of an Analog Compound Orthogonal Neural Network in Robot Control
,”
International Conference on Sensing, Computing and Automation
, Chongqing, China, pp.
455
458
.
21.
Ye
,
J.
,
2008
, “
Tracking Control for Nonholonomic Mobile Robots: Integrating the Analog Neural Network Into the Backstepping Technique
,”
Neurocomputing
,
71
(
16–18
), pp.
3373
3378
.
22.
Belmehdi
,
S.
,
2001
, “
Generalized Gegenbauer Orthogonal Polynomials
,”
J. Comput. Appl. Math.
,
133
(
1–2
), pp.
195
205
.
23.
Wu
,
C.
,
Zhang
,
H.
, and
Fang
,
T.
,
2007
, “
Flutter Analysis of an Airfoil With Bounded Random Parameters in Incompressible Flow Via Gegenbauer Polynomial Approximation
,”
Aerosp. Sci. Technol.
,
11
(
7–8
), pp.
518
526
.
24.
Zhang
,
Y.
, and
Li
,
W.
,
2009
, “
Gegenbauer Neural Network and Its Weights-Direct Determination Method
,”
IET Electron. Lett.
,
45
(
23
), pp.
1184
1185
.
25.
Li
,
X. D.
,
Ho
,
J. K. L.
, and
Chow
,
T. W. S.
,
2005
, “
Approximation of Dynamical Time-Variant Systems by Continuous-Time Recurrent Neural Networks
,”
IEEE Trans. Circuits Syst. II
,
52
(
10
), pp.
656
660
.
26.
Lin
,
C. H.
,
2013
, “
Recurrent Modified Elman Neural Network Control of PM Synchronous Generator System Using Wind Turbine Emulator of PM Synchronous Servo Motor Drive
,”
Int. J. Electric. Power Energy Syst.
,
52
(
1
), pp.
143
160
.
27.
Lin
,
C. H.
,
2014
, “
Dynamic Control for Permanent Magnet Synchronous Generator System Using Novel Modified Recurrent Wavelet Neural Network
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1261
1284
.
28.
Lin
,
C. H.
,
2016
, “
Modeling and Control of Six-Phase Induction Motor Servo-Driven Continuously Variable Transmission System Using Blend Modified Recurrent Gegenbauer Orthogonal Polynomial Neural Network Control System and Amended Artificial Bee Colony Optimization
,”
Int. J. Numer. Modell.: Electron. Networks, Devices Fields
,
29
(
5
), pp.
915
942
.
29.
Lin
,
C. H.
,
2016
, “
A Six-Phase CRIM Driving CVT Using Blend Modified Recurrent Gegenbauer OPNN Control
,”
J. Power Electron.
,
16
(
4
), pp.
1438
1454
.
30.
Karaboga
,
D.
,
2005
, “
An Idea Based on Honey Bee Swarm for Numerical Optimization
,” Computer Engineering Department, Erciyes University, Kayseri, Turkey,
Technical Report No. TR06
.
31.
Karaboga
,
D.
, and
Basturk
,
B.
,
2007
, “
A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm
,”
J. Global Optim.
,
39
(
3
), pp.
459
471
.
32.
Karaboga
,
D.
, and
Basturk
,
B.
,
2007
,
Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems
, (Lecture Notes in Artificial Intelligence), Vol.
4529
, pp.
789
798
.
33.
Karaboga
,
D.
, and
Basturk
,
B.
,
2008
, “
On the Performance of Artificial Bee Colony (ABC) Algorithm
,”
Appl. Soft Comput.
,
8
(
1
), pp.
687
697
.
34.
Xiang
,
W.
, and
An
,
M.
,
2013
, “
An Efficient and Robust Artificial Bee Colony Algorithm for Numerical Optimization
,”
Comput. Oper. Res.
,
40
(
5
), pp.
1256
1265
.
35.
Biswas
,
S.
,
Das
,
S.
,
Debchoudhury
,
S.
, and
Kundu
,
S.
,
2014
, “
Coevolving Bee Colonies by Forager Migration: A Multi-Swarm Based Artificial Bee Colony Algorithm for Global Search Space
,”
Appl. Math. Comput.
,
232
(
1
), pp.
216
234
.
36.
Ahrari
,
A.
, and
Atai
,
A. A.
,
2010
, “
Grenade Explosion Method-a Novel Tool for Optimization of Multimodal Functions
,”
Appl. Soft Comput.
,
10
(
4
), pp.
1132
1140
.
37.
Zhang
,
C.
,
Zheng
,
J.
, and
Zhou
,
Y.
,
2015
, “
Two Modified Artificial Bee Colony Algorithms Inspired by Grenade Explosion Method
,”
Neurocomputing
,
151
(
3
), pp.
1198
1207
.
38.
Alizadegan
,
A.
,
Asady
,
B.
, and
Ahmadpour
,
M.
,
2013
, “
Two Modified Versions of Artificial Bee Colony Algorithm
,”
Appl. Math. Comput.
,
225
(
1
), pp.
601
609
.
39.
Mansouri
,
P.
,
Asady
,
B.
, and
Gupta
,
N.
,
2015
, “
The Bisection–Artificial Bee Colony Algorithm to Solve Fixed Point Problems
,”
Appl. Soft Comput.
,
26
(
1
), pp.
143
148
.
40.
Lin
,
C. H.
,
2014
, “
Hybrid Recurrent Wavelet Neural Network Control of PMSM Servo-Drive System for Electric Scooter
,”
Int. J. Control, Autom. Syst.
,
12
(
1
), pp.
177
187
.
41.
Lin
,
C. H.
,
2015
, “
Dynamic Control of V-Belt Continuously Variable Transmission Driven Electric Scooter Using Hybrid Modified Recurrent Legendre Neural Network Control System
,”
Nonlinear Dyn.
,
79
(
2
), pp.
787
808
.
42.
Lin
,
C. H.
,
2015
, “
Novel Adaptive Recurrent Legendre Neural Network Control for PMSM Servo-Drive Electric Scooter
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
1
), p.
011010
.
43.
Ziegler
,
J. G.
, and
Nichols
,
N. B.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
Trans. ASME
,
64
, pp.
759
768
.
44.
Astrom
,
K. J.
, and
Hagglund
,
T.
,
1995
,
PID Controller: Theory, Design, and Tuning
,
Instrument Society of America
,
Research Triangle Park, NC
.
45.
Hagglund
,
T.
, and
Astrom
,
K. J.
,
2004
, “
Revisiting the Ziegler-Nichols Tuning Rules for PI Control—Part II: the Frequency Response Method
,”
Asian J. Control
,
6
(
4
), pp.
469
482
.
46.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
47.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
1995
,
Adaptive Control
,
Addison-Wesley
,
New York
.
You do not currently have access to this content.