This paper presents a simplified decoupler-based multivariable controller with a gain scheduling strategy in order to deal with strong nonlinearities and cross-coupled characteristics for exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems in diesel engines. A feedback controller is designed with the gain scheduling strategy, which updates control gains according to engine operating conditions. The gain scheduling strategy is implemented by using a proposed scheduling variable derived from indirect measurements of the EGR mass flow, such as the pressure ratio of the intake, exhaust manifolds, and the exhaust air-to-fuel ratio. The scheduling variable is utilized to estimate static gains of the EGR and VGT systems; it has a large dispersion in various engine operating conditions. Based on the estimated static gains of the plant, the Skogestad internal model control (SIMC) method determines appropriate control gains. The dynamic decoupler is designed to deal with the cross-coupled effects of the EGR and VGT systems by applying a simplified decoupler design method. The simplified decoupler is beneficial for compensating for the dynamics difference between two control loops of the EGR and VGT systems, for example, slow VGT dynamics and fast EGR dynamics. The proposed control algorithm is evaluated through engine experiments. Step test results of set points reveal that root-mean-square (RMS) error of the gain-scheduled feedback controller is reduced by 47% as compared to those of the fixed gain controller. Furthermore, the designed simplified decoupler decreased the tracking error under transients by 14–66% in various engine operating conditions.

References

References
1.
Mikulic
,
L.
,
Kühn
,
M.
,
Schommers
,
J.
, and
Willig
,
E.
,
1993
, “
Exhaust-Emission Optimization of Di-Diesel Passenger Car Engine With High-Pressure Fuel Injection and EGR
,”
SAE
Technical Papers No. 931035.
2.
Dürnholz
,
M.
,
Eifler
,
G.
, and
Endres
,
H.
,
1992
, “
Exhaust-Gas Recirculation—A Measure to Reduce Exhaust Emissions of DI Diesel Engines
,”
SAE
Paper No. 920725.
3.
Wahlström
,
J.
,
Eriksson
,
L.
, and
Nielsen
,
L.
,
2010
, “
EGR-VGT Control and Tuning for Pumping Work Minimization and Emission Control
,”
IEEE Trans. Control Syst. Technol.
,
18
(
4
), pp.
993
1003
.
4.
Kolmanovsky
,
I.
,
Morall
,
P.
,
Van Nieuwstadt
,
M.
, and
Stefanopoulou
,
A.
,
1999
,
Issues in Modelling and Control of Intake Flow in Variable Geometry Turbocharged Engines
(CRC Research Notes in Mathematics),
Chapman and Hall
,
Oxford, UK
, pp.
436
445
.
5.
Ammann
,
M.
,
Fekete
,
N. P.
,
Guzzella
,
L.
, and
Glattfelder
,
A.
,
2003
, “
Model-Based Control of the VGT and EGR in a Turbocharged Common-Rail Diesel Engine: Theory and Passenger Car Implementation
,”
SAE Trans.
,
112
(
3
), pp.
527
538
.
6.
Wahlström
,
J.
, and
Eriksson
,
L.
,
2010
, “
Nonlinear Input Transformation for EGR and VGT Control in Diesel Engines
,”
SAE
Technical Paper No. 2010-01-2203.
7.
Eriksson
,
L.
,
Wahlström
,
J.
, and
Klein
,
M.
,
2010
,
Physical Modeling of Turbocharged Engines and Parameter Identification
(Lecture Notes in Control and Information Sciences), Springer, UK, pp.
53
71
.
8.
Ortner
,
P.
, and
del Re
,
L.
,
2007
, “
Predictive Control of a Diesel Engine Air Path
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
449
456
.
9.
Wahlström
,
J.
,
Eriksson
,
L.
, and
Nielsen
,
L.
,
2009
, “
System Analysis of a Diesel Engine With VGT and EGR
,”
Linköping University
, Linköping, Sweden.
10.
Yan
,
F.
, and
Wang
,
J.
,
2012
, “
Air- and Fuel-Path Coordinated Control for Advanced Combustion Mode Transitions in Diesel Engines
,”
American Control Conference, Montreal
, QC, Canada, June 27–29, pp.
2890
2895
.
11.
Yan
,
F.
, and
Wang
,
J.
,
2013
, “
A Control-Oriented Model for Dynamics From Fuel Injection Profile to Intake Gas Conditions in Diesel Engines
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
5
), p.
051015
.
12.
Guzzella
,
L.
, and
Amstutz
,
A.
,
1998
, “
Control of Diesel Engines
,”
IEEE Control Syst.
,
18
(
5
), pp.
53
71
.
13.
Rajamani
,
R.
,
2005
, “
Control of a Variable-Geometry Turbocharged and Wastegated Diesel Engine
,”
Proc. Inst. Mech. Eng. Part D
,
219
(
11
), pp.
1361
1368
.
14.
Wahlström
,
J.
,
2006
, “
Control of EGR and VGT for Emission Control and Pumping Work Minimization in Diesel Engines
,”
Licentiate thesis
, Linköping University, Institutionen för Systemteknik, Linköping, Sweden.
15.
Hong
,
S.
,
Park
,
I.
,
Sohn
,
J.
, and
Sunwoo
,
M.
,
2014
, “
Dynamic Decoupler Design for EGR and VGT Systems in Passenger Car Diesel Engines
,”
Trans. Korean Soc. Automot. Eng.
,
22
(
2
), pp.
182
189
.
16.
Van Nieuwstadt
,
M. J.
,
Kolmanovsky
,
I. V.
,
Moraal
,
P. E.
,
Stefanopoulou
,
A.
, and
Jankovic
,
M.
,
2000
, “
EGR-VGT Control Schemes: Experimental Comparison for a High-Speed Diesel Engine
,”
IEEE Trans. Control Syst.
,
20
(
3
), pp.
63
79
.
17.
Yoon
,
Y.
,
Choi
,
S.
,
Ko
,
M.
, and
Lim
,
J.
,
2010
, “
Simplified Turbocharged Diesel Engine Air Path Modeling and Control Using Sliding Mode Controllers
,”
KSAE Annual Conference
, The Korean Society of Automotive Engineers, pp.
548
558
.
18.
Utkin
,
V. L.
,
Chang
,
H. C.
,
Kolmanovsky
,
I.
, and
Cook
,
J. A.
,
2000
, “
Sliding Mode Control for Variable Geometry Turbocharged Diesel Engines
,”
American Control Conference
, June 28–30, pp.
584
588
.
19.
Jung
,
M.
, and
Glover
,
K.
,
2006
, “
Calibratable Linear Parameter-Varying Control of a Turbocharged Diesel Engine
,”
IEEE Trans. Control Syst. Technol.
,
14
(
1
), pp.
45
62
.
20.
Yan
,
F.
, and
Wang
,
J.
,
2013
, “
Control of Diesel Engine Dual-Loop EGR Air-Path Systems by a Singular Perturbation Method
,”
Control Eng. Pract.
,
21
(
7
), pp.
981
988
.
21.
Zhang
,
H.
,
Wang
,
J.
, and
Wang
,
Y.-Y.
,
2015
, “
Nonlinear Observer Design of Diesel Engine Selective Catalytic Reduction Systems With Sensor Measurements
,”
IEEE/ASME Trans. Mech.
,
20
(
4
), pp.
1585
1594
.
22.
Upadhyay
,
D.
,
Utkin
,
V.
, and
Rizzoni
,
G.
,
2002
, “
Multivariable Control Design for Intake Flow Regulation of a Diesel Engine Using Sliding Mode
,”
15th Triennial World Congress of the International Federation of Automatic Control, Barcelona
, Spain, pp.
21
26
.
23.
Lee
,
M.
, and
Sunwoo
,
M.
,
2012
, “
Modelling and H ∞ Control of Diesel Engine Boost Pressure Using a Linear Parameter Varying Technique
,”
Proc. Inst. Mech. Eng. Part D
,
226
(
2
), pp.
210
224
.
24.
Xiukun
,
W.
, and
Del Re
,
L.
,
2007
, “
Gain Scheduled Hinf Control for Air Path Systems of Diesel Engines Using LPV Techniques
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
406
415
.
25.
Saerens
,
B.
,
Diehl
,
M.
,
Swevers
,
J.
, and
Van Den Bulck
,
E.
,
2008
, “
Model Predictive Control of Automotive Powertrains—First Experimental Results
,” 7th
IEEE
Conference on Decision and Control, Cancun
, Mexico, Dec. 9–11, pp.
5692
5697
.
26.
Zhang
,
H.
, and
Wang
,
J.
,
2016
, “
Adaptive Sliding-Mode Observer Design for A Selective Catalytic Reduction System of Ground-Vehicle Diesel Engines
,”
IEEE/ASME Trans. Mech.
,
21
(
4
), pp.
2027
2038
.
27.
Zhang
,
H.
,
Zhang
,
G.
, and
Wang
,
J.
,
2016
, “
Observer Design for LPV Systems With Uncertain Measurements on Scheduling Variables: Application to an Electric Ground Vehicle
,”
IEEE/ASME Trans. Mech.
,
21
(
3
), pp.
1659
1670
.
28.
Zhang
,
H.
,
Zhang
,
X.
, and
Wang
,
J.
,
2014
, “
Robust Gain-Scheduling Energy-to-Peak Control of Vehicle Lateral Dynamics Stabilisation
,”
Veh. Syst. Dyn.
,
52
(
3
), pp.
309
340
.
29.
Pérez
,
P. A.
, and
Sala
,
D. A.
,
2004
,
Multivariable Control Systems: An Engineering Approach
,
Springer
,
New York
.
30.
Luján
,
J. M.
,
Climent
,
H.
,
Guardiola
,
C.
, and
García-Ortiz
,
J. V.
,
2007
, “
A Comparison of Different Algorithms for Boost Pressure Control in a Heavy-Duty Turbocharged Diesel Engine
,”
Proc. Inst. Mech. Eng. Part D
,
221
(
5
), pp.
629
640
.
31.
Jung
,
M.
,
2003
, “
Mean-Value Modelling and Robust Control of the Airpath of a Turbocharged Diesel Engine
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
32.
Zhang
,
H.
, and
Wang
,
J.
,
2016
, “
Vehicle Lateral Dynamics Control Through AFS/DYC and Robust Gain-Scheduling Approach
,”
IEEE Trans. Veh. Technol.
,
65
(
1
), pp.
489
494
.
33.
Zentner
,
S.
,
Schäfer
,
E.
,
Fast
,
G.
,
Onder
,
C. H.
, and
Guzzella
,
L.
,
2014
, “
A Cascaded Control Structure for Air-Path Control of Diesel Engines
,”
Proc. Inst. Mech. Eng. Part D
,
228
(
7
), pp.
799
817
.
34.
Wang
,
Y. Y.
,
Haskara
,
I.
, and
Yaniv
,
O.
,
2011
, “
Quantitative Feedback Design of Air and Boost Pressure Control System for Turbocharged Diesel Engines
,”
Control Eng. Pract.
,
19
(
6
), pp.
626
637
.
35.
Park
,
I.
,
Hong
,
S.
, and
Sunwoo
,
M.
,
2014
, “
Robust Air-to-Fuel Ratio and Boost Pressure Controller Design for the EGR and VGT Systems Using Quantitative Feedback Theory
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2218
2231
.
36.
Park
,
I.
,
Hong
,
S.
,
Shin
,
J.
, and
Sunwoo
,
M.
,
2013
, “
Robust Air-to-Fuel Ratio Control Algorithm of Passenger Car Diesel Engines Using Quantitative Feedback Theory
,”
Trans. Korean Soc. Automot. Eng.
,
21
(
3
), pp.
88
97
.
37.
Hong
,
S.
,
Park
,
I.
, and
Sunwoo
,
M.
,
2016
, “
Model-Based Gain Scheduling Strategy for an Internal Model Control-Based Boost Pressure Controller in VGT System of Diesel Engines
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
3
), p.
031010
.
38.
Skogestad
,
S.
,
2004
, “
Simple Analytic Rules for Model Reduction and PID Controller Tuning
,”
Model. Identification Control
,
25
(
2
), pp.
85
120
.
39.
Rajapandiyan
,
C.
, and
Chidambaram
,
M.
,
2012
, “
Controller Design for MIMO Processes Based on Simple Decoupled Equivalent Transfer Functions and Simplified Decoupler
,”
Ind. Eng. Chem. Res.
,
51
(
38
), pp.
12398
12410
.
40.
Gagnon
,
E.
,
Pomerleau
,
A.
, and
Desbiens
,
A.
,
1998
, “
Simplified, Ideal or Inverted Decoupling?
,”
ISA Trans.
,
37
(
4
), pp.
265
276
.
41.
Zhang
,
H.
,
Wang
,
J.
, and
Wang
,
Y. Y.
,
2015
, “
Sensor Reduction in Diesel Engine Two-Cell Selective Catalytic Reduction (SCR) Systems for Automotive Applications
,”
IEEE/ASME Trans. Mech.
,
20
(
5
), pp.
2222
2233
.
42.
Stotsky
,
A.
, and
Kolmanovsky
,
I.
,
2002
, “
Application of Input Estimation Techniques to Charge Estimation and Control in Automotive Engines
,”
Control Eng. Pract.
,
10
(
12
), pp.
1371
1383
.
43.
Chauvin
,
J.
,
Corde
,
G.
,
Petit
,
N.
, and
Rouchon
,
P.
,
2008
, “
Motion Planning for Experimental Airpath Control of a Diesel Homogeneous Charge-Compression Ignition Engine
,”
Control Eng. Pract.
,
16
(
9
), pp.
1081
1091
.
44.
Holliday
,
T.
,
Lawrance
,
A. J.
, and
Davis
,
T. P.
,
1998
, “
Engine-Mapping Experiments: A Two-Stage Regression Approach
,”
Technometrics
,
40
(
2
), pp.
120
126
.
45.
Lee
,
Y.
,
Park
,
S.
,
Lee
,
M.
, and
Brosilow
,
C.
,
1998
, “
PID Controller Tuning for Desired Closed‐Loop Responses for SI/SO Systems
,”
AIChE J.
,
44
(
1
), pp.
106
115
.
46.
Seborg
,
D.
,
Edgar
,
T. F.
, and
Mellichamp
,
D.
,
2006
,
Process Dynamics & Control
,
Wiley
,
Hoboken, NJ
.
47.
Wang
,
Q.-G.
,
Huang
,
B.
, and
Guo
,
X.
,
2000
, “
Auto-Tuning of TITO Decoupling Controllers From Step Tests
,”
ISA Trans.
,
39
(
4
), pp.
407
418
.
48.
Shen
,
Y.
,
Cai
,
W. J.
, and
Li
,
S.
,
2010
, “
Multivariable Process Control: Decentralized, Decoupling, or Sparse?
,”
Ind. Eng. Chem. Res.
,
49
(
2
), pp.
761
771
.
49.
He
,
M.-J.
,
Cai
,
W.-J.
,
Ni
,
W.
, and
Xie
,
L.-H.
,
2009
, “
RNGA Based Control System Configuration for Multivariable Processes
,”
J. Process Control
,
19
(
6
), pp.
1036
1042
.
50.
Cai
,
W. J.
,
Ni
,
W.
,
He
,
M. J.
, and
Ni
,
C. Y.
,
2008
, “
Normalized Decoupling—A New Approach for MIMO Process Control System Design
,”
Ind. Eng. Chem. Res.
,
47
(
19
), pp.
7347
7356
.
51.
Park
,
I.
,
Lee
,
W.
, and
Sunwoo
,
M.
,
2012
, “
Application Software Modeling and Integration Methodology Using AUTOSAR-Ready Light Software Architecture
,”
Trans. Korean Soc. Automot. Eng.
,
20
(
6
), pp.
117
125
.
You do not currently have access to this content.