Electricity generation from moving currents without using dams (i.e., in-stream hydrokinetic electricity) has the potential to introduce multiple GW of renewable power to U.S. grids. This study evaluates a control system designed to regulate the generator rotor rate (rpm) to improve power production from in-stream hydrokinetic turbines. The control algorithm is evaluated using numerical models of both a rigidly mounted tidal turbine (TT) and a moored ocean current turbine (OCT) coupled to an induction electric machine model. The moored simulation utilizes an innovative approach for coupling a multiple degrees-of-freedom (DOF) nonlinear hydrodynamic/mechanical turbine model with a nonlinear electromechanical generator model. Based on the turbine torque-speed characteristic, as well as the asynchronous machine features, a proportional–integral (PI) controller is used to generate a correction term for the frequency of the three-phase sinusoidal voltages that are supplied to the asynchronous generator. The speed control of the induction generator through the supply frequency is accomplished by a simplified voltage source inverter (VSI). The simplified VSI consists of control voltage sources (CVSs), while the comparison with a real VSI using diodes and transistors, which are controlled by pulse width modulation (PWM) technique, is also presented. Simulations are used to evaluate the developed algorithms showing that rpm fluctuations are around 0.02 for a tidal turbine operating in a wave field with a 6 m significant wave height and around 0.005 for a moored ocean current turbine operating in a wave field with a 2 m significant wave height.

References

References
1.
EPRI
,
2012
, “
Assessment and Mapping of the Riverine Hydrokinetic Energy Resource in the Continental United States
,” Report No. 1026880,
Electrical Power Research Institute
, Palo Alto, CA.
2.
Georgia Tech University
,
2011
, “
Assessment of Energy Production Potential From Tidal Streams in the United States
,” Georgia Tech Research Corp., Atlanta, GA, accessed Nov. 1, 2016, http://www1.eere.energy.gov/water/pdfs/1023527.pdf
3.
Georgia Tech Research Corp.
,
2013
, “
Assessment of Energy Production Potential From Ocean Currents Along the United States Coastline
,” Georgia Tech Research Corp., Atlanta, GA, accessed Nov. 1, 2016, http://www1.eere.energy.gov/water/pdfs/energy_production_ocean_currents_us.pdf
4.
U.S. Energy Information Administration
,
2014
, “Monthly Energy Review,” U.S. Department of Energy, Washington, DC, accessed Nov. 1, 2016, http://www.eia.gov/totalenergy/data/monthly/pdf/sec7_5.pdf
5.
Johnson
,
J. B.
, and
Pride
,
D. J.
,
2010
, “
River, Tidal, and Ocean Current Hydrokinetic Energy Technologies: Status and Future Opportunities in Alaska
,”
Alaska Center for Energy and Power
, University of Alaska Fairbanks, Fairbanks, AK.
6.
ORPC
,
2016
, “Ocean Renewable Power Company Home Page,” Ocean Renewable Power Company, Portland, ME, accessed Nov. 1, 2016, http://www.orpc.co/
7.
Hydro Green Energy
,
2016
, “Hastings Project,” Hydro Green Energy, Westmont, IL, accessed Nov. 1, 2016, http://hgenergy.com/index.php/projects/hastings-project/
8.
Free Flow Power
,
2016
, “Free Flow Power,” Free Flow Power, Boston, MA, Nov. 1, 2016, accessed Nov. 1, 2016, http://free-flow-power.com
9.
Verdant Power
,
2016
, “Verdant Power Initiative,” Verdant Power, New York, accessed Nov. 1, 2016, http://verdantpower.com/what-initiative/
10.
Davis
,
B. V.
,
Farrell
,
J. R.
,
Swan
,
D. H.
, and
Jeffers
, and
K. A.
,
1986
, “
Generation of Electric Power From the Florida Current of the Gulf Stream
,”
18th Annual Offshore Technology Conference
, Houston, TX, May 5–8, Paper No. OTC-5120.
11.
SNMREC
,
2014
, “
SNMREC Turbine Tow Test 1 Video Posted
,” FAU, Boca Raton, FL, accessed Nov. 1, 2016, http://snmrec.fau.edu/news/snmrec-turbine-tow-test-1-video-posted.html
12.
VanZwieten
,
J. H.
,
Duerr
,
A. E. S.
,
Alsenas
,
G. M.
, and
Hanson
,
H. P.
,
2013
, “
Global Ocean Current Energy Assessment: An Initial Look
,”
1st Marine Energy Technology Symposium (METS13) Washington
, DC, Apr. 10–11.
13.
VanZwieten
,
J. H.
,
Baxley
,
W. E.
,
Alsenas
,
G. M.
,
Meyer
,
I.
,
Muglia
,
M.
,
Lowcher
,
C.
,
Bane
,
J.
,
Gabr
,
M.
,
He
,
R.
,
Hudon
,
T.
,
Stevens
,
R.
, and
Duerr
,
A. E. S.
,
2015
, “
SS Marine Renewable Energy–Ocean Current Turbine Mooring Considerations
,”
Offshore Technology Conference
, Houston, TX, May 4–7, Paper No. OTC-25965-MS.
14.
Gevorgian
,
V.
,
Singh
,
M.
, and
Muljadi
,
E.
,
2012
, “
Variable Frequency Operations of an Offshore Wind Power Plant With HVDC-VSC
,”
IEEE Power and Energy Society General Meeting
, San Diego, CA, July 22–26, Paper No. 0430-P-04.
15.
Garcia-Hernandez
,
R.
, and
Garduno-Ramirez
,
R.
,
2013
, “
Modeling a Wind Turbine Synchronous Generator
,”
Int. J. Energy Power
,
2
(
3
), pp.
64
70
.
16.
Devabhaktuni
,
S.
, and
Kumar
,
S. V. J.
,
2012
, “
Modeling and Analysis of Wind Turbine Driven Self-Excited Induction Generator Connected to Grid Interface With Multilevel H-Bridge Inverter
,”
International Journal of Computer and Electrical Engineering
,
4
(
1
), pp.
19
24
.
17.
Xiros
,
N. I.
,
VanZwieten
,
J. H.
,
Sultan
,
C.
, and
Tzelepis
,
V.
,
2014
, “
Power Take-Off Control of In-Stream Hydrokinetic Turbines
,”
ASME
Paper No. DSCC2014-6247.
18.
VanZwieten
,
J. H.
,
Pyakurel
,
P.
,
Ngo
,
T.
,
Sultan
,
C.
, and
Xiros
,
N. I.
,
2016
, “
An Assessment of Using Variable Blade Pitch for Moored Ocean Current Turbine Flight Control
,”
Int. J. Mar. Energy
,
13
, pp.
16
26
.
19.
Driscoll
,
F. R.
,
Alsenas
,
G. M.
,
Beaujean
,
P. P.
,
Ravenna
,
S.
,
Raveling
,
J.
,
Busold
,
E.
, and
Slezycki
,
C.
,
2008
, “
A 20 kW Open Ocean Current Test Turbine
,”
MTS/IEEE Oceans Conference
, Quebec City, QC, Canada, Sept. 15–18, Paper No. OCEANS.2008.5152104.
20.
Vanrietvelde
,
N.
,
2009
, “
Numerical Performance Prediction for FAU’s First Generation Ocean Current Turbine
,” M.Sc. thesis, Department of Ocean Engineering, Florida Atlantic University, Boca Raton, FL.
21.
VanZwieten
,
J. H.
,
Vanrietvelde
,
N.
, and
Hacker
,
B.
,
2013
, “
Numerical Simulation of an Experimental Ocean Current Turbine
,”
J. Oceanic Eng.
,
38
(
1
), pp.
131
143
.
22.
Young
,
M.
,
2012
, “
Design and Analysis of an Ocean Current Turbine Performance Assessment System
,” M.Sc. thesis, Department of Ocean Engineering, Florida Atlantic University, Boca Raton, FL.
23.
VanZwieten
,
J. H.
,
Young
,
M. T.
, and
Von Ellenrieder
,
K. D.
,
2012
, “
Design and Analysis of an Ocean Current Turbine Performance Assessment System
,”
IEEE Oceans Conference
, Hampton Roads, VA, Oct. 14–19, Paper No. 120530-005.
24.
Pierson
,
W. J.
, and
Moskowitz
,
L.
,
1964
, “
A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii
,”
J. Geophys. Res.
,
69
(
24
), pp.
5181
5190
.
25.
Longuet-Higgins
,
M. S.
,
Cartwright
,
D. E.
, and
Smith
,
N. D.
,
1963
, “
Observations of the Directional Spectrum of Sea Waves Using the Motion of a Floating Buoy
,”
Ocean Wave Spectra
, Prentice-Hall, Upper Saddle River, NJ, pp.
111
136
.
26.
Goda
,
Y.
,
1985
,
Random Seas and Design of Maritime Structures
,
University of Tokyo Press
,
Tokyo, Japan
, Chap. 2.
27.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1991
,
Water Wave Mechanics for Engineers and Scientists
,
World Scientific
,
River Edge, NJ
, p.
86
.
28.
The Mathworks
, 2011, “
Product—MATLAB
,” The Mathworks Inc., Natick, MA, accessed Dec. 1, 2014, http://www.mathworks.com/products/matlab
29.
The Mathworks
, 2011, “
Product—Simulink
,” The Mathworks Inc., Natick, MA, accessed Dec. 1, 2014, http://www.mathworks.com/products/simulink
30.
The Mathworks
, 2011, “
Product—SimPowerSystems
,” The Mathworks Inc., Natick, MA, accessed Dec. 1, 2014, http://www.mathworks.com/products/simpower
31.
The Mathworks
,
2011
, “
SimPowerSystems v.5 User’s Guide—R2011a
,” The Mathworks Inc., Natick, MA, accessed Dec. 1, 2014, http://www.se.mathworks.com/help/releases/R2011a/pdf_doc/physmod/powersys/powersys.pdf
32.
Xiros
,
N. I.
,
Zisman
,
Z. S.
, and
Von Ellenrieder
, and
K. D.
,
2012
, “
A Modular Dynamical Simulation Model for All Electric Ship Powertrain With Surface Piercing Propeller
,”
1st International MARINELIVE Conference on All Electric Ship
, Athens, Greece, June 3–5.
33.
Costa
,
A.
,
Vilaragut
,
M.
,
Travieso-Torres
,
J.
,
Duarte-Mermoud
,
M.
,
Munoz
,
J.
, and
Yznaga
,
I.
,
2012
, “
MATLAB Based Simulation Toolbox for the Study and Design of Induction Motor FOC Speed Drives
,”
Comput. Appl. Eng. Educ.
,
20
(
2
), pp.
295
312
.
34.
Aktaibi
,
A.
,
Ghanim
,
D.
, and
Rahman
,
M. A.
,
2011
, “
Dynamic Simulation of a Three-Phase Induction Motor Using MatlabSimulink
,”
IEEE 20th Annual Newfoundland Electrical and Computer Engineering Conference
(
NECEC
), St. John's, NL, Canada, Nov. 1.
35.
Salahat
,
M.
,
Barbarawe
,
O.
,
Zalata
,
M.
, and
Asad
,
S.
,
2011
, “
Modular Approach for Investigation of the Dynamic Behavior of Three-Phase Induction Machine at Load Variation
,”
Int. J. Eng.
,
3
(
3
), pp.
525
531
.
36.
Shah
,
S.
,
Rashid
,
A.
, and
Bhatti
,
M. K. L.
,
2012
, “
Direct-Quadrate Modeling of 3-Phase Induction Motor Using MATLAB/Simulink
,”
IEEE Can. J. Electr. Electron. Eng.
,
3
(
5
), pp.
237
243
.
37.
Leedy
,
A. W.
,
2013
, “
Simulink/MATLAB Dynamic Induction Motor Model for Use as a Teaching and Research Tool
,”
Int. J. Soft Comput. Eng.
,
3
(
4
), pp. 102–107.
38.
Batool
,
M.
, and
Ahmad
,
A.
,
2013
, “
Mathematical Modeling and Speed Torque Analysis of Three Phase Squirrel Cage Induction Motor Using MATLABSimulink for Electrical Machines Laboratory
,”
Int. Electr. Eng. J.
,
4
(
1
), pp.
880
889
.
39.
Shi
,
X.
,
Li
,
H.
, and
Huang
,
J.
,
2014
, “
A Practical Scheme for Induction Motor Modeling and Control
,”
Int. J. Control Autom.
,
7
(
4
), pp.
113
124
.
40.
Rahaman
,
N.
, and
Govindraju
,
H. V.
,
2014
, “
Modeling and Simulation of a Three-Phase Electric Traction Induction Motor Using MATLABSimulink
,”
Int. J. Electr., Electron. Comput. Syst.
,
2
(
5
), pp. 18–25.
41.
Phukon
,
L. J.
, and
Baruah
,
N.
,
2015
, “
A Generalized MATLABSimulink Model of a Three Phase Induction Motor
,”
Int. J. Innovative Res. Sci., Eng. Technol.
,
4
(
5
), pp.
2926
2934
.
42.
Ratnani
,
P. L.
, and
Thosar
,
A. G.
,
2014
, “
Mathematical Modelling of a 3 Phase Induction Motor Using MATLAB/Simulink
,”
Int. J. Mod. Eng. Res.
,
4
(
6
), pp.
62
67
.
43.
Fitzgerald
,
A. E.
,
Kingsley
,
C.
, and
Umans
,
S. D.
,
2003
,
Electric Machinery
,
6th ed.
,
McGraw-Hill Companies
, New York.
44.
Tong
,
W.
,
2014
,
Mechanical Design of Electric Motors
,
1st ed.
,
CRC Press—Taylor and Francis Group
, Boca Raton, FL.
45.
ABB Group
,
2016
, “
ABB Home Page
,” ASEA Brown Boveri Group, Zurich, Switzerland., accessed Nov.1, 2016, http://www.abb.com
46.
Buhl
,
M. L.
,
2004
, “
WT_PERF User’s Guide
,” National Wind Technology Center-National Renewable Energy Laboratory, Golden, CO.
47.
Hansen
,
M. O. L.
,
2008
,
Aerodynamics of Wind Turbines
,
Earthscan
,
London, UK
, pp. 49, 52, 53, 55, 85–100.
48.
Radanovic
,
B.
, and
Driscoll
,
F. R.
,
2012
, “
Development of an Efficient General Purpose Cable Model and Simulation for Marine Application
,”
MTS/IEEE Oceans Conference
, Oct. 29–31, pp.
2060
2067
.
49.
Ziergler
,
J. G.
, and
Nichols
,
N. B.
,
1993
, “
Optimum Setting for Automatic Controllers
,”
ASME J. Dyn. Sys. Meas. Control
,
115
(2B), pp.
220
222
.
50.
Park
,
R. H.
,
1929
, “
Two-Reaction Theory of Synchronous Machines- Generalized Method of Analysis—Part I
,”
AIEE Trans.
,
48
(3), pp.
716
727
.
51.
Hughes
,
A.
, and
Drury
,
B.
,
2013
, Electric Motors and Drives—Fundamentals, Types and Application,
Elsevier Ltd.
, Amsterdam, The Netherlands.
52.
Tzelepis
,
V.
,
2015
, “
Electromechanics of an Ocean Current Turbine
,” M.Sc. thesis, Department of Engineering, School of Naval Architecture and Marine Engineering, University of New Orleans, New Orleans, LA.
53.
Holtz
,
J.
,
1994
, “
Pulse Width Modulation for Electronic Power Conversion
,”
Proc. IEEE
,
82
(
8
), pp.
1194
1214
.
You do not currently have access to this content.