A novel open-loop control method is presented for mobile robots based on an asymptotic inverse dynamic solution and trajectory planning. The method is based on quantification of sliding by a small nondimensional parameter. Asymptotic expansion of the equations yields the dominant nonslip solution along with a first-order correction for sliding. A trajectory planning is then introduced based on transitional circles between the robot initial states and target reference trajectory. The transitional trajectory ensures smooth convergence of the robot states to the target reference trajectory, which is essential for open-loop control. Experimental results with a differential drive mobile robot demonstrate the significant improvement of the controller performance when the first-order correction is included.

References

References
1.
Clayton
,
G.
,
Tien
,
S.
,
Leang
,
K.
,
Zou
,
Q.
, and
Devasia
,
S.
,
2009
, “
A Review of Feedforward Control Approaches in Nanopositioning for High-Speed SPM
,”
ASME J. Dyn. Syst. Meas. Control
,
131
(
6
), p.
061101
.
2.
Kolmanovsky
,
I.
, and
McClamroch
,
N.
,
1995
, “
Developments in Nonholonomic Control Problems
,”
IEEE Control Syst. Mag.
,
15
(
6
), pp.
20
36
.
3.
Fierro
,
R.
, and
Lewis
,
F.
,
1997
, “
Control of a Nonholonomic Mobile Robot: Backstepping Kinematics Into Dynamics
,”
J. Rob. Sys.
,
14
(
3
), pp.
149
163
.
4.
Yang
,
J.-M.
, and
Kim
,
J.-H.
,
1999
, “
Sliding Mode Control for Trajectory Tracking of Nonholonomic Wheeled Mobile Robots
,”
IEEE Trans. Rob. Autom.
,
15
(
3
), pp.
578
587
.
5.
Astolfi
,
A.
,
1999
, “
Exponential Stabilization of a Wheeled Mobile Robot Via Discontinuous Control
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
1
), pp.
121
126
.
6.
Klančar
,
G.
,
Matko
,
D.
, and
Blažič
,
S.
,
2005
, “
Mobile Robot Control on a Reference Path
,”
Mediterranean Conference on Control and Automation
, June 27–29, pp.
1343
1348
.
7.
Ghasemi
,
M.
,
Nersesov
,
S.
, and
Clayton
,
G.
,
2014
, “
Finite-Time Tracking Using Sliding Mode Control
,”
J. Franklin Inst.
,
351
(
5
), pp.
2966
2990
.
8.
Raimúndez
,
C.
,
Villaverde
,
A.
, and
Barreiroz
,
A.
,
2014
, “
Adaptive Tracking in Mobile Robots With Input–Output Linearization
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
5
), p.
054503
.
9.
Luviano-Juárez
,
A.
,
Cortés-Romero
,
J.
, and
Sira-Ramírez
,
H.
,
2015
, “
Trajectory Tracking Control of a Mobile Robot Through a Flatness-Based Exact Feedforward Linearization Scheme
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
5
), p.
051001
.
10.
Ghasemi
,
M.
,
Nersesov
,
S.
,
Clayton
,
G.
, and
Ashrafiuon
,
H.
,
2014
, “
Sliding Mode Coordination Control for Multiagent Systems With Underactuated Agent Dynamics
,”
Int. J. Control
,
87
(
12
), pp.
2615
2633
.
11.
Balakrishna
,
R.
, and
Ghosal
,
A.
,
1995
, “
Modeling of Slip for Wheeled Mobile Robots
,”
IEEE Trans. Rob. Autom.
,
11
(
1
), pp.
126
132
.
12.
Wang
,
D.
, and
Low
,
C. B.
,
2008
, “
Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective
,”
IEEE Trans. Rob.
,
24
(
3
), pp.
676
687
.
13.
Ward
,
C. C.
, and
Iagnemma
,
K.
,
2008
, “
A Dynamic-Model-Based Wheel Slip Detector for Mobile Robots on Outdoor Terrain
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
821
831
.
14.
Iagnemma
,
K.
,
Kang
,
S.
,
Shibly
,
H.
, and
Dubowsky
,
S.
,
2004
, “
Online Terrain Parameter Estimation for Wheeled Mobile Robots With Application to Planetary Rovers
,”
IEEE Trans. Rob.
,
20
(
5
), pp.
921
927
.
15.
Gao
,
H.
,
Song
,
X.
,
Ding
,
L.
,
Xia
,
K.
,
Li
,
N.
, and
Dong
,
Z.
,
2014
, “
Adaptive Motion Control of Wheeled Mobile Robot With Unknown Slippage
,”
Int. J. Control
,
87
(
8
), pp.
1513
1522
.
16.
Fierro
,
R.
, and
Lewis
,
F. L.
,
1998
, “
Control of a Nonholonomic Mobile Robot Using Neural Networks
,”
IEEE Trans. Neural Networks
,
9
(
4
), pp.
589
600
.
17.
Starrenburg
,
J.
,
Luenen
,
W. V.
,
Oelen
,
W.
, and
Amerongen
,
J. V.
,
1996
, “
Learning Feedforward Controller for a Mobile Robot Vehicle
,”
Control Eng. Pract.
,
4
(
9
), pp.
1221
1230
.
18.
Howard
,
T.
,
Pivtoraiko
,
M.
,
Knepper
,
R.
, and
Kelly
,
A.
,
2014
, “
Model-Predictive Motion Planning: Several Key Developments for Autonomous Mobile Robots
,”
IEEE Rob. Autom. Mag.
,
21
(
1
), pp.
64
73
.
19.
Whitman
,
A.
,
Clayton
,
G.
,
Poultney
,
A.
, and
Ashrafiuon
,
H.
,
2015
, “
Wheel-Slip Based Inverse Solution for Differential Drive Mobile Robots
,”
ASME
Paper No. DSCC2015-9854.
20.
Wickens
,
A.
,
1976
, “
Steering and Dynamic Stability of Railway Vehicles
,”
Veh. Syst. Dyn.
,
5
(
1
), pp.
15
46
.
21.
Schramm
,
D.
,
Hiller
,
M.
, and
Bardini
,
R.
,
1970
,
Vehicle Dynamics, Modeling and Simulation
,
Springer
,
New York
.
You do not currently have access to this content.