In this paper, a dual-mode model predictive/linear control method is presented, which extends the concept of dual-mode model predictive control (MPC) to trajectory tracking control of nonlinear dynamic systems described by discrete-time state-space models. The dual-mode controller comprises of a time-varying linear control law, implemented when the states lie within a sufficiently small neighborhood of the reference trajectory, and a model predictive control strategy driving the system toward that neighborhood. The boundary of this neighborhood is characterized so as to ensure stability of the closed-loop system and terminate the optimization procedure in a finite number of iterations, without jeopardizing the stability of the closed-loop system. The developed controller is applied to the central air handling unit (AHU) of a two-zone variable air volume (VAV) heating, ventilation, and air conditioning (HVAC) system.

References

References
1.
Morari
,
M.
, and
Lee
,
J. H.
,
1999
, “
Model Predictive Control: Past, Present and Future
,”
Comput. Chem. Eng.
,
23
(
4–5
), pp.
667
682
.
2.
Diehl
,
M.
,
Findeisen
,
R.
,
Schwarzkopf
,
S.
,
Uslu
,
I.
,
Allgöwer
,
F.
,
Bock
,
H. G.
,
Gilles
,
E. D.
, and
Schlöder
,
J. P.
,
2003
, “
An Efficient Algorithm for Nonlinear Model Predictive Control of Large-Scale Systems—Part II: Experimental Evaluation for a Distillation Column
,”
Automatisierungstechnik
,
51
(
1
), pp.
22
29
.
3.
Camacho
,
E. F.
, and
Bordons
,
C.
,
1999
,
Model Predictive Control
,
Springer
,
New York
.
4.
Qin
,
S. J.
, and
Badgwell
,
T. A.
,
2003
, “
A Survey of Industrial Model Predictive Control Technology
,”
Control Eng. Pract.
,
11
(
7
), pp.
733
764
.
5.
Rawlings
,
J. B.
, and
Mayne
,
D. Q.
,
2000
,
Model Predictive Control: Theory and Design
,
Nob Hill Publishers
,
Madison, WI
.
6.
Grune
,
L.
, and
Pannek
,
J.
,
2011
,
Nonlinear Model Predictive Control: Theory and Algorithms
,
Springer-Verlag
,
London
.
7.
Ahmad
,
Z.
, and
Zhang
,
J.
,
2006
, “
A Nonlinear Model Predictive Control Strategy Using Multiple Neural Networks Models
,”
Adv. Neural Networks
,
3972
, pp.
943
948
.
8.
Dziekan
,
L.
,
Witczak
,
M.
, and
Korbicz
,
J.
,
2011
, “
A Predictive Fault-Tolerant Control Scheme for Takagi–Sugeno Fuzzy Systems
,”
IFAC Proc.
44
(
1
), pp.
4684
4689
.
9.
Mu
,
J.
, and
Rees
,
D.
,
2004
, “
Approximate Model Predictive Control for Gas Turbine Engines
,”
2004 American Control Conference
, June 30–July 2, pp.
5704
5709
.
10.
Michalska
,
H.
, and
Mayne
,
D. Q.
,
1993
, “
Robust Receding Horizon Control of Constrained Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
38
(
1
), pp.
1623
1633
.
11.
Chen
,
H.
, and
Allgöwer
,
F.
,
1998
, “
A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme With Guaranteed Stability
,”
Automatica
,
34
(
10
), pp.
1205
1217
.
12.
Scokaert
,
P. O. M.
,
Mayne
,
D. Q.
, and
Rawlings
,
J. B.
,
1999
, “
Suboptimal Model Predictive Control (Feasibility Implies Stability)
,”
IEEE Trans. Autom. Control
,
44
(
3
), pp.
648
654
.
13.
Nguyen
,
H.
, and
Gutman
,
P.
,
2013
, “
A New Dual-Mode Model Predictive Control for Constrained Linear Systems
,”
21st Mediterranean Conference on Control and Automation
(
MED
), Vol.
4
, pp.
1393
1397
.
14.
Al-Gherwi
,
W.
,
Budman
,
H.
, and
Elkamel
,
A.
,
2013
, “
A Robust Distributed Model Predictive Control Based on a Dual-Mode Approach
,”
Comput. Chem. Eng.
,
50
(
1
), pp.
130
138
.
15.
Acikmese
,
A. B.
, and
Carson
,
J. M.
, III
,
2006
, “
A Nonlinear Model Predictive Control Algorithm With Proven Robustness and Resolvability
,”
2006 American Control Conference
, June 14–16, pp.
887
893
.
16.
Stephens
,
M. A.
,
Manzie
,
C.
, and
Good
,
M. C.
,
2013
, “
Model Predictive Control for Reference Tracking on an Industrial Machine Tool Servo Drive
,”
IEEE Trans. Ind. Inf.
,
9
(
2
), pp.
808
816
.
17.
Simon
,
D.
,
Löfberg
,
J.
, and
Glad
,
T.
,
2014
, “
Reference Tracking MPC Using Dynamic Terminal Set Transformation
,”
IEEE Trans. Autom. Control
,
59
(
10
), pp.
2790
2795
.
18.
Limon
,
D.
,
Alamo
,
T.
,
de la Pena
,
D. M.
,
Zeilinger
,
M.
,
Jones
,
C.
, and
Periera
,
M.
,
2012
, “
MPC for Tracking Periodic Reference Signals
,”
IFAC Proc. Vol.
,
45
(
17
), pp.
490
495
.
19.
Chisci
,
L.
,
Falugi
,
P.
, and
Zappa
,
G.
,
2005
, “
Predictive Tracking Control of Constrained Nonlinear Systems
,”
IEEE Proc. Control Theory Appl.
,
152
(
3
), pp.
309
316
.
20.
Magni
,
L.
,
Nicolao
,
G. D.
,
Magnani
,
L.
, and
Scattolini
,
R.
,
2001
, “
A Stabilizing Model-Based Predictive Control Algorithm for Nonlinear Systems
,”
Automatica
,
37
(
9
), pp.
1351
1362
.
21.
Kuhne
,
F.
,
Gomes
,
J. M.
, and
Lages
,
W. F.
,
2005
, “
Mobile Robot Trajectory Tracking Using Model Predictive Control
,”
VII SBAI/II IEEE LARS
, pp.
1
7
.
22.
Faulwasser
,
T.
, and
Findeisen
,
R.
,
2011
, “
A Model Predictive Control Approach to Trajectory Tracking Problems Via Time-Varying Level Sets of Lyapunov Functions
,”
50th IEEE Conference on Decision and Control and European Control Conference
(
CDC-ECC
), Dec. 12–15, pp.
3381
3386
.
23.
Kazantzis
,
N.
,
Chong
,
K. T.
,
Park
,
J. H.
, and
Parlos
,
A. G.
,
2005
, “
Control-Relevant Discretization of Nonlinear Systems With Time-Delay Using Taylor-Lie Series
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
1
), p.
153
.
24.
Vaclavek
,
P.
, and
Blaha
,
P.
,
2013
, “
PMSM Model Discretization for Model Predictive Control Algorithms
,” 2013
IEEE/SICE
International Symposium on System Integration
, Dec. 15–17, Vol.
3
, pp.
13
18
.
25.
Sakamoto
,
T.
,
Noriyuki
,
H.
, and
Ochi
,
Y.
,
2011
, “
Exact Linearization and Discretization of Nonlinear Systems Satisfying a Lagrange PDE Condition
,”
Trans. Can. Soc. Mech. Eng.
,
35
(
2
), pp.
215
228
.
26.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
,
Rao
,
C. V.
, and
Scokaert
,
P. O. M.
,
2000
, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
,
36
(
6
), pp.
789
814
.
27.
Keerthi
,
S. S.
, and
Gilbert
,
E. G.
,
1988
, “
Optimal Infinite-Horizon Feedback Laws for a General Class of Constrained Discrete-Time Systems: Stability and Moving-Horizon Approximations
,”
J. Optim. Theory Appl.
,
57
(
2
), pp.
265
293
.
28.
Rodriguez
,
L. A.
, and
Sideris
,
A.
,
2011
, “
A Sequential Linear Quadratic Approach for Constrained Nonlinear Optimal Control
,”
American Control Conference (ACC)
, pp.
1470
1475
.
29.
Khalil
,
H. K.
,
1996
,
Nonlinear Systems
,
2nd ed.
,
Prentice Hall
, Upper Saddle River, NJ.
30.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.
31.
Kwadzogah
,
R.
,
Zhou
,
M.
, and
Li
,
S.
,
2013
, “
Model Predictive Control for HVAC Systems—A Review
,”
2013 IEEE International Conference on Automation Science and Engineering
(
CASE
), Aug. 17–20, pp.
442
447
.
32.
Zaheer-Uddin
,
M.
, and
Zheng
,
G.
,
1994
, “
A VAV System Model for Simulation of Energy Management Control Functions: Off Normal Operation and Duty Cycling
,”
Energy Convers. Manage.
,
35
(
II
), pp.
917
931
.
33.
Underwood
,
C.
, and
Yik
,
F. W. H.
,
2004
,
Modelling Methods for Energy in Buildings
,
Blackwell Science
,
Oxford, UK
.
34.
McQuinston
,
F.
,
Parker
,
J.
, and
Spitler
,
J.
,
2005
,
Heating, Ventilation and Air Conditioning—Analysis and Design
,
Wiley
,
Hoboken, NJ
.
35.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2001
,
Introduction to Heat Transfer
,
4th ed.
,
Wiley
,
New York
.
36.
ASHRAE
,
2004
, “
Ventilation for Acceptable Indoor Air Quality
,” American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.: Atlanta, GA Standard No. ANSI/ASHRAE Standard 62-2001.
37.
Butcher
,
J. C.
,
2003
,
Numerical Methods for Ordinary Differential Equations
,
Wiley
,
West Sussex, UK
.
38.
Murphy
,
J.
,
2011
, “
High-Performance VAV Systems
,”
ASHRAE J.
,
53
(
10
), pp.
18
28
.
39.
Zanasi
,
R.
,
Guarino Lo Bianco
,
C.
, and
Tonielli
,
A.
,
2000
, “
Nonlinear Filters for the Generation of Smooth Trajectories
,”
Automatica
,
36
(
3
), pp.
439
448
.
40.
Bonfè
,
M.
, and
Secchi
,
C.
,
2010
, “
Online Smooth Trajectory Planning for Mobile Robots by Means of Nonlinear Filters
,”
IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems
(
IROS 2010
), Oct. 18–22, pp.
4299
4304
.
You do not currently have access to this content.