This paper presents the modeling and robust low-level control design of a redundant mobile robot with four omnidirectional wheels, the iSense Robotic (iSRob) platform, that was designed to test safe control algorithms. iSRob is a multivariable nonlinear system subject to parameter uncertainties mainly due to friction forces. A multilinear model is proposed to approximate the behavior of the system, and the parameters of these models are estimated from closed-loop experimental data applying Gauss–Newton techniques. A robust control technique, quantitative feedback theory (QFT), is applied to design a proportional–integral (PI) controller for robust low-level control of the iSRob system, being this the main contribution of the paper. The designed controller is implemented, tested, and compared with a gain-scheduling PI-controller based on pole assignment. The experimental results show that robust stability and control effort margins against system uncertainties are satisfied and demonstrate better performance than the other controllers used for comparison.

References

References
1.
Doroftei
,
I.
,
Grosu
,
V.
, and
Spinu
,
V.
,
2007
, “
Omnidirectional Mobile Robot—Design and Implementation
,”
Bioinspiration and Robotics Walking and Climbing Robots
, s. M. K. Habib, ed., InTech, Rijeka, Croatia.
2.
Yang
,
G.
,
Li
,
Y.
,
Lim
,
T. M.
, and
Lim
,
C. W.
,
2014
, “
Decoupled Powered Caster Wheel for Omnidirectional Mobile Platforms
,”
2014 IEEE 9th Conference on Industrial Electronics and Applications
(
ICIEA
), June 9–11, pp.
954
959
.
3.
Rotondo
,
D.
,
Nejjari
,
F.
, and
Puig
,
V.
,
2014
, “
Model Reference Switching Quasi-LPV Control of a Four Wheeled Omnidirectional Robot
,”
IFAC Proc. Vol.
,
47
(3), pp.
4062
4067
.
4.
Palli
,
G.
, and
Melchiorri
,
C.
,
2014
, “
Friction Compensation Techniques for Tendon-Driven Robotic Hands
,”
Mechatronics
,
24
(
2
), pp.
108
117
.
5.
Armstrong-Hlouvry
,
B.
,
Dupont
,
P.
, and
Wit
,
C. C. D.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.
6.
Bona
,
B.
, and
Indri
,
M.
,
2005
, “
Friction Compensation in Robotics: An Overview
,”
44th IEEE Conference on Decision and Control, 2005 European Control Conference
,
CDC-ECC’05
, Dec. 15, pp.
4360
4367
.
7.
Ruderman
,
M.
, and
Iwasaki
,
M.
,
2015
, “
Observer of Nonlinear Friction Dynamics for Motion Control
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5941
5949
.
8.
Tian
,
Y.
, and
Sarkar
,
N.
,
2014
, “
Control of a Mobile Robot Subject to Wheel Slip
,”
J. Intell. Rob. Syst.
,
74
(
3–4
), pp.
915
929
.
9.
Kanjanawanishkul
,
K.
,
2012
, “
Motion Control of a Wheeled Mobile Robot Using Model Predictive Control: A Survey
,”
KKU Res. J.
,
17
(
5
), pp.
811
837
.
10.
Jamaludin
,
Z.
,
Van Brussel
,
H.
, and
Swevers
,
J.
,
2009
, “
Friction Compensation of an XY Feed Table Using Friction-Model-Based Feedforward and an Inverse-Model-Based Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
56
(
10
), pp.
3848
3853
.
11.
Cho
,
H. C.
,
Fadali
,
M. S.
,
Lee
,
K. S.
, and
Kim
,
N. H.
,
2010
, “
Adaptive Position and Trajectory Control of Autonomous Mobile Robot Systems With Random Friction
,”
IET Control Theory Appl.
,
4
(
12
), pp.
2733
2742
.
12.
Lins Barreto
,
S. J.
,
Scolari Conceicao
,
A.
,
Dorea
,
C.
,
Martinez
,
L.
, and
De Pieri
,
E.
,
2014
, “
Design and Implementation of Model-Predictive Control With Friction Compensation on an Omnidirectional Mobile Robot
,”
IEEE/ASME Trans. Mechatronics
,
19
(
2
), April, pp.
467
476
.
13.
Bayar
,
G.
,
Bergerman
,
M.
,
Konukeseven
,
E. I.
, and
Koku
,
A. B.
,
2016
, “
Improving the Trajectory Tracking Performance of Autonomous Orchard Vehicles Using Wheel Slip Compensation
,”
Biosyst. Eng.
,
146
, pp.
149
164
.
14.
Armstrong
,
B.
,
Neevel
,
D.
, and
Kusik
,
T.
,
2001
, “
New Results in NPID Control: Tracking, Integral Control, Friction Compensation and Experimental Results
,”
IEEE Trans. Control Syst. Technol.
,
9
(
2
), pp.
399
406
.
15.
Oliveira
,
H. P.
,
Sousa
,
A. J.
,
Moreira
,
A. P.
, and
Costa
,
P. J.
,
2009
, “
Modeling and Assessing of Omni-Directional Robots With Three and Four Wheels
,”
Contemporary Robotics—Challenges and Solutions
,
A. D.
Rodi
, ed., InTech, Rijeka, Croatia.
16.
Hashemi
,
E.
,
Jadidi
,
M.
, and
Babarsad
,
O.
,
2009
, “
Trajectory Planning Optimization With Dynamic Modeling of Four Wheeled Omni-Directional Mobile Robots
,”
2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation
(
CIRA
), Dec. 15–18, pp.
272
277
.
17.
Ren
,
W.
,
Sun
,
J.-S.
,
Beard
,
R.
, and
McLain
,
T.
,
2007
, “
Experimental Validation of an Autonomous Control System on a Mobile Robot Platform
,”
Control Theory Appl., IET
,
1
(
6
), pp.
1621
1629
.
18.
Oftadeh
,
R.
,
Ghabcheloo
,
R.
, and
Mattila
,
J.
,
2014
, “
Time Optimal Path Following With Bounded Velocities and Accelerations for Mobile Robots With Independently Steerable Wheels
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), May 31–June 7, pp.
2925
2931
.
19.
Bertolissi
,
E.
,
Birattari
,
M.
,
Bontempi
,
G.
,
Duchteau
,
A.
, and
Bersini
,
H.
,
2002
, “
Data-Driven Techniques for Direct Adaptive Control: The Lazy and the Fuzzy Approaches
,”
Fuzzy Sets Syst.
,
128
(
1
), pp.
3
14
.
20.
Lu
,
L.
,
Chen
,
Z.
,
Yao
,
B.
, and
Wang
,
Q.
,
2013
, “
A Two-Loop Performance-Oriented Tip-Tracking Control of a Linear-Motor-Driven Flexible Beam System With Experiments
,”
IEEE Trans. Ind. Electron.
,
60
(
3
), pp.
1011
1022
.
21.
Horowitz
,
I. M.
,
1963
,
Synthesis of Feedback Systems
,
Academic Press
, New York/London.
22.
Niksefat
,
N.
, and
Sepehri
,
N.
,
2001
, “
Designing Robust Force Control of Hydraulic Actuators Despite System and Environmental Uncertainties
,”
IEEE Control Systems
,
21
(
2
), pp.
66
77
.
23.
Borghesani
,
C.
,
Chait
,
Y.
, and
Yaniv
,
O.
,
2003
, “
The QFT Frequency Domain Control Design Toolbox
,”
Terasoft, Inc.
, San Diego, CA.
24.
Díaz
,
J. M.
,
Dormido
,
S.
, and
Aranda
,
J.
,
2005
, “
Interactive Computer-Aided Control Design Using Quantitative Feedback Theory: The Problem of Vertical Movement Stabilization on a High-Speed Ferry
,”
Int. J. Control
,
78
(
11
), pp.
813
825
.
25.
Petersen
,
I.
,
Ugrinovskii
,
V. A.
, and
Savkin
,
A. V.
,
2000
,
Robust Control Design Using H-inf Methods
,
Springer-Verlag
, London.
26.
Murray-Smith
,
R.
, and
Johansen
,
T. A.
,
1997
,
Multiple Model Approaches To Nonlinear Modelling and Control
,
Taylor & Francis
, London.
27.
Comasolivas
,
R.
,
Quevedo
,
J.
,
Escobet
,
T.
,
Escobet
,
A.
, and
Romera
,
J.
,
2015
, “
Low Level Control of an Omnidirectional Mobile Robot
,”
23th Mediterranean Conference on Control and Automation
(
MED
), June 16–19, pp.
1160
1166
.
28.
Balakrishna
,
R.
, and
Ghosal
,
A.
,
1995
, “
Modeling of Slip for Wheeled Mobile Robots
,”
IEEE Trans. Rob. Autom.
,
11
(
1
), pp.
126
132
.
29.
Conceicao
,
A.
,
Moreira
,
A.
, and
Costa
,
P.
,
2009
, “
Practical Approach of Modeling and Parameters Estimation for Omnidirectional Mobile Robots
,”
IEEE/ASME Trans. Mechatronics
,
14
(
3
), pp.
377
381
.
30.
Ren
,
C.
, and
Ma
,
S.
,
2013
, “
Dynamic Modeling and Analysis of an Omnidirectional Mobile Robot
,” 2013
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Nov. 3–5, pp.
4860
4865
.
31.
Marques
,
F.
,
Flores
,
P.
,
Claro
,
J. P.
, and
Lankarani
,
H. M.
,
2016
, “
A Survey and Comparison of Several Friction Force Models for Dynamic Analysis of Multibody Mechanical Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1407
1443
.
32.
Williams
,
R. L.
,
Carter
,
B. E.
,
Gallina
,
P.
, and
Rosati
,
G.
,
2002
, “
Dynamic Model With Slip for Wheeled Omnidirectional Robots
,”
IEEE Trans. Rob. Autom.
,
18
(
3
), pp.
285
293
.
33.
Wang
,
Y.
,
Wang
,
S.
,
Tan
,
R.
, and
Jiang
,
Y.
,
2013
, “
Motion Control of a Wheeled Mobile Robot Using Digital Acceleration Control Method
,”
Int. J. Innov. Comput. Inf. Control (ICIC)
,
9
(
1
), pp. 387–396.
34.
Houpis
,
C. H.
, and
Rasmussen
,
S. J.
,
1999
,
Quantitative Feedback Theory: Fundamentals and Applications
,
Marcel Dekker
, New York.
35.
Garcia-Sanz
,
M.
,
Mauch
,
A.
, and
Philippe
,
C.
,
2011
, “
The QFT Control Toolbox (QFTCT) for Matlab
,” Ver. 3.31, European Space Agency ESA-ESTEC, Public University of Navarra,
Case Western University,
Cleveland, OH.
36.
Díaz
,
J. M.
,
Dormido
,
S.
, and
Aranda
,
J.
,
2005
, “
SISO-QFTIT an Interactive Software Tool for the Design of Robust Controllers Using the QFT Methodology
,”
UNED
, Madrid, Spain.
37.
Gil-Martínez
,
M.
, and
García-Sanz
,
M.
,
2003
, “
Simultaneous Meeting of Robust Control Specifications in QFT
,”
Int. J. Robust Nonlinear Control
,
13
(
7
), pp.
643
656
.
You do not currently have access to this content.