This paper deals with physical modeling of human hand–eye coordinated movement for applications in time-motion study of pick-and-place operations. Time-motion studies typically use experimentations to closely examine each segment of a worker's pick-and-place movements in order to design a more optimized operation. This paper presents two different methods that can replace the need for experimentation or estimation in the time motion process with control-theoretic models. The first method is a control-theoretic physical model of the human hand–eye coordinated movement in performing a pick-and-place operation. It is based on an extension of control theoretic models of airplane pilots. The second method combines two existing techniques developed in the literature for different purposes. It is shown in this paper that the combination of these two existing methods provides for an alternative approach that can be used for time-motion studies related to the human pick-and-place operation. Using simple experimentation, it is shown that both methods provide reasonable model-based representation of time motion studies for pick-and-place tasks. In developing the physical model, a method based on the use of the quantitative feedback theory (QFT) is also developed for tuning the physical model that can be utilized in making the model specific to different applications involving human hand–eye coordinated movements. Furthermore, the physical model is applied in a predictive fashion and it is shown that it can successfully estimate the movement time for manual pick-and-place tasks found in some industrial applications.

References

1.
Gilbreth
,
F. B.
,
1909
,
Bricklaying System
,
Myron C. Clark Publishing
,
New York
.
2.
Taylor
,
F. W.
,
1911
,
The Principles of Scientific Management
,
Harper and Brothers
,
New York
.
3.
Karger
,
D. W.
, and
Bayha
,
F. H.
,
1977
,
Engineered Work Measurement
, 3rd ed.,
Industrial Press
,
New York
.
4.
Crowson
,
R.
, and
Walker
,
J.
,
1996
,
Handbook of Manufacturing Engineering
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
5.
MTM Systems
,
2016
, “
The MTM Association for Standards and Research
,”
MTM Systems
,
Des Plaines, IL,
accessed May 3, 2014, http://www.mtm.org/systems.htm
6.
Niebel
,
B.
, and
Freivalds
,
A.
,
2002
,
Methods, Standards, and Work Design
, 11th ed.,
McGraw-Hill
,
New York
.
7.
Flash
,
T.
, and
Hogan
,
N.
,
1985
, “
The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model
,”
J. Neurosci.
,
5
(
7
), pp.
1688
1703
.
8.
Hoff
,
B.
, and
Arbib
,
M. A.
,
1993
, “
Models of Trajectory Formation and Temporal Interaction of Reach and Grasp
,”
J. Mot. Behav.
,
25
(
3
), pp.
175
192
.
9.
Fitts
,
P. M.
,
1954
, “
The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement
,”
J. Exp. Psychol.
,
47
(
6
), pp.
381
391
.
10.
McRuer
,
D.
, and
Graham
,
D.
,
1963
, “
Pilot-Vehicle Control System Analysis
,”
AIAA
Guidance and Control Conference, Cambridge, MA, Aug. 12–14.
11.
McRuer
,
D.
,
Graham
,
D.
,
Krendel
,
E.
, and
Reisener
,
W.
,
1965
, “
Human Pilot Dynamics in Compensatory Systems
,” Air Force Flight Dynamics Laboratory, Wright–Patterson Air Force Base, OH,
AFFDL
Technical Report No. AFFDL-TF-65-15.
12.
Jagacinski
,
R. J.
, and
Flash
,
J. M.
,
2002
,
Control Theory for Humans
,
CRC Press
,
Boca Raton, FL
.
13.
Hess
,
R. A.
,
1980
, “
Structural Model of the Adaptive Human Pilot
,”
J. Guid., Control, Dyn.
,
3
(
5
), pp.
416
423
.
14.
Hess
,
R. A.
,
1985
, “
A Model-Based Theory for Analyzing Human Control Behavior
,”
Advance in Man-Machine Systems Research
, Vol.
2
,
W. B.
Rouse
, ed.,
JAI Press
,
Greenwich, CT
, pp.
129
175
.
15.
Modjtahedzadeh
,
A.
, and
Hess
,
R. A.
,
1993
, “
A Model of Driver Steering Control Behavior for Use in Assessing Vehicle Handling Qualities
,”
ASME J. Dyn. Syst., Meas., Control
,
115
(
3
), pp.
456
464
.
16.
Hess
,
R.
, and
Modjtahedzadeh
,
A.
,
1990
, “
A Control Theoretic Model of Driver Steering Behavior
,”
IEEE Control Syst. Mag.
,
10
(
5
), pp.
3
8
.
17.
Kleinman
,
D.
,
Baron
,
S.
, and
Levison
,
W.
,
1970
, “
An Optimal Control Model of Human Response Part I: Theory and Validation
,”
Automatica
,
6
(
3
), pp.
357
369
.
18.
Baron
,
S.
,
Kleinman
,
D.
, and
Levison
,
W.
,
1970
, “
An Optimal Control Model of Human Response Part II: Prediction of Human Performance in a Complex Task
,”
Automatica
,
6
(
3
), pp.
371
383
.
19.
Meyer
,
D. E.
,
Abrams
,
R. A.
,
Kornblum
,
S.
,
Wright
,
C. E.
, and
Smith
,
J. E. K.
,
1988
, “
Optimality in Human Motor Performance: Ideal Control of Rapid Aimed Movements
,”
Psychol. Rev.
,
95
(
3
), pp.
340
370
.
20.
Wang
,
C.
,
Liao
,
F.
,
Han
,
J.
, and
Li
,
G.
,
2008
, “
A Revised Optimal Control Pilot Model for Computer Simulation
,”
2nd International Conference on Bioinformatics and Biomedical Engineering
, Shanghai, China, May 16–18, pp.
844
848
.
21.
Chong
,
L.
,
Abbas
,
M. M.
,
Flintsch
,
A. M.
, and
Higgs
,
B.
,
2013
, “
A Rule-Based Neural Network Approach to Model Driver Naturalistic Behavior in Traffic
,”
Transp. Res. Part C: Emerging Technol.
,
32
, pp.
207
223
.
22.
Lin
,
Y.
,
Tang
,
P.
,
Zhang
,
W.
, and
Yu
,
Q.
,
2005
, “
Artificial Neural Network Modelling of Driver Handling Behaviour in a Driver-Vehicle-Environment System
,”
Int. J. Veh. Des.
,
37
(
1
), pp.
24
45
.
23.
Hogan
,
N.
,
2002
, “
Skeletal Muscle Impedance in the Control of Motor Actions
,”
J. Mech. Med. Biol.
,
2
(03n04), pp.
359
373
.
24.
Hogan
,
N.
,
1984
, “
Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles
,”
IEEE Trans. Autom. Control
,
29
(
8
), pp.
681
690
.
25.
Lawrence
,
D.
,
1993
, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
624
637
.
26.
Kosuge
,
K.
,
Fujisawa
,
Y.
, and
Fukuda
,
T.
,
1992
, “
Control of Mechanical System With Man-Machine Interaction
,”
1992 lEEE/RSJ International Conference on Intelligent Robots and Systems
,
Raleigh, NC
.
27.
Tsuji
,
T.
,
Goto
,
K.
,
Moritani
,
M.
,
Kaneko
,
M.
, and
Morasso
,
P.
,
1994
, “
Spatial Characteristics of Human Hand Impedance in Multi-Joint Arm Movements
,”
IEEE/RSJ/GI International Conference on Intelligent Robots and Systems'94
,
Munich, Germany
.
28.
Speich
,
J. E.
,
Shao
,
L.
, and
Goldfarb
,
M.
,
2005
, “
Modeling the Human Hand as It Interacts With a Telemanipulation System
,”
Mechatronics
,
15
(
9
), pp.
1127
1142
.
29.
Gawthrop
,
P.
,
Lakie
,
M.
, and
Loram
,
I.
,
2008
, “
Predictive Feedback Control and Fitts' Law
,”
Biol. Cybern.
,
98
(
3
), pp.
238
299
.
30.
Wang
,
C.
, and
Ravani
,
B.
,
2015
, “
Development of a Control Theoretic Alternative to Fitts' Law With Application to In-Vehicle Touchscreen Interface
,” Proc. of ASME Design Engr. Tech. Conf., ASME Paper No. DETC2015-46341, Boston, MA.
31.
McRuer
,
D. T.
, and
Jex
,
H. R.
,
1967
, “
A Review of Quasi-Linear Pilot Models
,”
IEEE Trans. Hum. Factors Electron.
,
HFE-8
(
3
), pp.
231
249
.
32.
Hess
,
R.
,
1997
, “
Unified Theory for Aircraft Handling Qualities and Adverse Aircraft-Pilot Coupling
,”
J. Guid., Control, Dyn.
,
20
(
6
), pp.
1141
1148
.
33.
Lasky
,
T.
, and
Ravani
,
B.
,
1997
, “
Use of Convex Hulls for Plant Template Approximation in QFT Design
,”
ASME J. Dyn. Syst., Meas., Control
,
119
(
3
), pp.
598
600
.
34.
Houpis
,
C. H.
, and
Rasmussen
,
S. J.
,
1999
,
Quantitative Feedback Theory: Fundamentals and Applications
,
Taylor & Francis
,
CRC Press, Boca Raton, FL
.
35.
Garcia-Sanz
,
M.
, and
Houpis
,
C. H.
,
2012
,
Wind Energy Systems: Control Engineering Design
,
CRC Press
,
Boca Raton, FL
.
36.
Garcia-Sanz
,
M.
,
Mauch
,
A.
, and
Philippe
,
C.
,
2015
, The QFT Control Toolbox (QFTCT) for Matlab, Version 6.03,
CWRU, UPNA, and ESA-ESTEC,
Cleveland, OH
, http://cesc.case.edu ed
37.
Barnes
,
R.
, and
Mundel
,
M.
,
1938
,
Studies of Hand Motions and Rhythm Appearing in Factory Work
,
State University of Iowa
,
Iowa City, IA
.
38.
Butcher
,
P. J.
,
1953
, “
Predetermined Motion Times
,” M.S. thesis, University of Kansas, Lawrence, KS.
39.
Raphael
,
D. L.
,
1953
,
An Analysis of Short Reaches and Moves
,
The MTM Associations for Standards and Research
,
Des Plains, IL
.
40.
Jakobson
,
L.
, and
Goodale
,
M. A.
,
1991
, “
Factors Affecting Higher-Order Movement Planning: A Kinematic Analysis of Human Prehension
,”
Exp. Brain Res.
,
86
(
1
), pp.
199
208
.
41.
Bootsma
,
R. J.
,
Marteniuk
,
R. G.
,
MacKenzie
,
C. L.
, and
Zaal
,
F. T.
,
1994
, “
The Speed-Accuracy Trade-Off in Manual Prehension: Effects of Movement Amplitude, Object Size and Object Width on Kinematic Characteristics
,”
Exp. Brain Res.
,
98
(
3
), pp.
535
541
.
You do not currently have access to this content.