This paper presents a new type of endocrine neural network (ENN). ENN utilizes artificial glands which enable the network to be adaptive to external disturbances. Sensitivity is controlled by the hormone decay rate and the value of the sensitivity parameter. The network presented in this paper is improved by making the sensitivity parameter self-tuning and implementing orthogonal activation functions inside the network structure. Automatic tuning is performed on the basis of the biological principle of postsynaptic potentials by implementing inhibitory and excitatory glands inside the standard backpropagation learning algorithm of developed orthogonal ENN. These additional network functionalities enable extra sensitivity to external conditions and an additional network feature of activation sharpening. The network was tested on real-time series of experimental data with a purpose to forecast exchange rate of the three widely used international currencies.

References

References
1.
Philip
,
A. A.
,
Taofiki
,
A. A.
, and
Bidemi
,
A. A.
,
2011
, “
Artificial Neural Network Model for Forecasting Foreign Exchange Rate
,”
World Comput. Sci. Inf. Technol. J.
,
1
(
3
), pp.
110
118
.
2.
Erdogan
,
O.
, and
Goksu
,
A.
,
2014
, “
Forecasting Euro and Turkish Lira Exchange Rates With Artificial Neural Networks (ANN)
,”
Int. J. Acad. Res. Accounting, Finance Manage. Sci.
,
4
(
4
), pp.
307
316
.
3.
Zhang
,
G.
, and
Berardi
,
V.
,
2001
, “
Time Series Forecasting With Neural Network Ensembles: An Application for Exchange Rate Prediction
,”
J. Operational Res. Soc.
,
52
(
6
), pp.
652
664
.
4.
Yu
,
L.
,
Wang
,
S.
, and
Lai
,
K.
,
2005
, “
Adaptive Smoothing Neural Networks in Foreign Exchange Rate Forecasting
,”
5th International Conference, Computational Science—
ICCS 2005
, Atlanta, GA, May 22–25, pp.
523
530
.
5.
Chen
,
A.
,
Hsu
,
Y.
, and
Hu
,
K.
,
2008
, “
A Hybrid Forecasting Model for Foreign Exchange Rate Based on a Multi-Neural Network
,”
4th International Conference on Natural Computation
,
ICNC
, Oct. 18–20, Vol.
5
, pp.
293
298
.
6.
Chen
,
Y.
,
Peng
,
L.
, and
Abraham
,
A.
,
2006
, “
Exchange Rate Forecasting Using Flexible Neural Trees
,”
Advances in Neural Networks
(Lecture Notes in Computer Science),
J.
Wang
,
Z.
Yi
,
J. M.
Zurada
,
B.-L.
Lu
, and
H.
Yin
, eds., Vol.
3973
,
Springer
,
Berlin
, pp.
518
523
.
7.
Gomes
,
G. S. D. S.
,
Ludermir
,
T. B.
, and
Lima
,
L. M.
,
2010
, “
Comparison of New Activation Functions in Neural Network for Forecasting Financial Time Series
,”
Neural Comput. Appl.
,
20
(
3
), pp.
417
439
.
8.
Tenti
,
P.
,
1996
, “
Forecasting Foreign Exchange Rates Using Recurrent Neural Networks
,”
Appl. Artif. Intell.
,
10
(
6
), pp.
567
582
.
9.
Pino
,
R.
,
Parreno
,
J.
,
Gomez
,
A.
, and
Priore
,
P.
,
2008
, “
Forecasting Next-Day Price of Electricity in the Spanish Energy Market Using Artificial Neural Networks
,”
Eng. Appl. Artif. Intell.
,
21
(
1
), pp.
53
62
.
10.
Božić
,
J.
, and
Babić
,
D.
,
2015
, “
EUR/RSD Exchange Rate Forecasting Using Hybrid Wavelet-Neural Model: A Case Study
,”
Comput. Sci. Inf. Syst.
,
12
(
2
), pp.
487
508
.
11.
Sa'Adah
,
U.
,
Seno
,
S.
,
Guritno
,
S.
, and
Suhartono
,
S.
,
2015
, “
Wavelet Neural Network Model Selection for Nonlinear-Seasonal Time Series Forecasting
,”
Global J. Pure Appl. Math.
,
11
(
1
), pp.
137
148
.
12.
Li
,
A.
, and
Wu
,
J.
,
2012
, “
Modeling and Prediction With Wavelet Neural Network in the On-Linear Time Series
,”
Int. Rev. Comput. Software
,
7
(
7
), pp.
3617
3621
.
13.
Timmis
,
J.
,
Neal
,
M.
, and
Thorniley
,
J.
,
2009
, “
An Adaptive Neuro-Endocrine System for Robotic Systems
,”
IEEE
Workshop on Robotic Intelligence in Informationally Structured Space
, Nashville, TN, Mar. 30–Apr. 2, Vol.
1
, pp.
129
136
.
14.
Timmis
,
J.
,
Murray
,
L.
, and
Neal
,
M.
,
2010
, “
A Neural-Endocrine Architecture for Foraging in Swarm Robotic Systems
,”
Gonzales
,
J. R.
,
Pelta
,
D. A.
,
Cruz
,
C.
,
Terrazas
,
G.
, and
Krasnogor
,
N.
, eds.,
Nature Inspired Cooperative Strategies for Optimization (NICSO 2010)
(Studies in Computational Intelligence),
Springer
,
Berlin
, Vol.
284
, pp.
319
330
.
15.
Chen
,
D.
,
Wang
,
J.
,
Zou
,
F.
,
Yuan
,
W.
, and
Hou
,
W.
,
2014
, “
Time Series Prediction With Improved Neuro-Endocrine Model
,”
Neural Comput. Appl.
,
24
(
6
), pp.
1465
1475
.
16.
Sauze
,
C.
, and
Neal
,
M.
,
2013
, “
Artificial Endocrine Controller for Power Management in Robotic Systems
,”
IEEE Trans. Neural Networks Learn. Syst.
,
24
(
12
), pp.
1973
1985
.
17.
French
,
R.
,
1991
, “
Using Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks
,”
13th Annual Cognitive Science Society Conference
, Vol.
1
, pp.
173
178
.
18.
Jian
,
B.
,
Yi
,
Y.
, and
Bin
,
Z.
,
2009
, “
Research on Real-Time Image Sharpening Methods Based on Optimized Neural Network
,”
5th International Conference on Natural Computation
, Vol.
2
, pp.
424
428
.
19.
Ans
,
B.
, and
Rousset
,
S.
,
2000
, “
Neural Networks With a Self-Refreshing Memory: Knowledge Transfer in Sequential Learning Tasks Without Catastrophic Forgetting
,”
Connect. Sci.
,
12
(
1
), pp.
1
19
.
20.
Billings
,
S.
,
Jamaluddin
,
H.
, and
Chen
,
S.
,
1991
, “
A Comparison of the Backpropagation and Recursive Prediction Error Algorithms for Training Neural Networks
,”
Mech. Syst. Signal Process.
,
5
(
3
), pp.
233
255
.
21.
Kumar
,
K.
,
1992
, “
Backpropagation Algorithm for a Generalized Neural Network Structure
,”
IEEE S Southeastcon
, Apr. 12–15, Vol.
2
, pp.
646
649
.
22.
Nikolić
,
S. S.
,
Antić
,
D. S.
,
Milojković
,
M. T.
,
Milovanović
,
M. B.
,
Perić
,
S. L.
, and
Mitić
,
D. B.
,
2016
, “
Application of Neural Networks With Orthogonal Activation Functions in Control of Dynamical Systems
,”
Int. J. Electron.
,
103
(
4
), pp.
667
685
.
23.
Milojković
,
M.
,
Antić
,
D.
,
Milovanović
,
M.
,
Nikolić
,
S. S.
,
Perić
,
S.
, and
Almawlawe
,
M.
,
2015
, “
Modeling of Dynamic Systems Using Orthogonal Endocrine Adaptive Neuro-Fuzzy Inference Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
9
), p.
091013
.
24.
Perić
,
S.
,
Antić
,
D.
,
Milovanović
,
M.
,
Mitić
,
D.
,
Milojković
,
M.
, and
Nikolić
,
S.
,
2016
, “
Quasi-Sliding Mode Control With Orthogonal Endocrine Neural Network-Based Estimator Applied in Anti-Lock Braking System
,”
IEEE/ASME Trans. Mech.
,
21
(
2
), pp.
754
764
.
25.
Rumelhart
,
D.
,
Hinton
,
G.
, and
Williams
,
R.
,
1986
, “
Learning Internal Representations by Error Propagation
,”
Parallel Distributed Processing
,
D.
Rumelhart
and
J.
McClelland
, eds., Vol.
1
,
MIT Press
,
Cambridge, MA
.
26.
Antweiler, W.,
2015
, “
Service for Academic Research and Teaching
,” University of British Columbia, Vancouver, Canada, accessed Apr. 11, 2015, http://fx.sauder.ubc.ca/
27.
Kaastra
,
I.
, and
Boyd
,
M.
,
1996
, “
Designing a Neural Network for Forecasting Financial and Economic Time Series
,”
Neurocomputing
,
10
(
3
), pp.
215
236
.
28.
Zhu
,
X.
,
Chen
,
J.
, and
Zhong
,
M.
,
2015
, “
Dynamic Interacting Relationships Among International Oil Prices, Macroeconomic Variables and Precious Metal Prices
,”
Trans. Nonferrous Met. Soc. China
,
25
(
2
), pp.
669
676
.
29.
Imandoust
,
S.
, and
Fahimifard
,
S.
,
2010
, “
Application of NNRAX to Agricultural Economic Variables Forecasting
,”
J. Appl. Sci.
,
10
(
13
), pp.
1263
1270
.
30.
Lee
,
C.
,
Chung
,
P.
,
Tsai
,
J.
, and
Chang
,
C.
,
1999
, “
Robust Radial Basis Function Neural Networks
,”
IEEE Trans. Syst. Man Cybern.
,
29
(
6
), pp.
674
685
.
31.
Gardner
,
W.
, and
Dorling
,
S. R.
,
1998
, “
Artificial Neural Networks (The Multilayer Perceptron)—A Review of Applications in the Atmospheric Sciences
,”
Atmos. Environ.
,
32
(
14−15
), pp.
2627
2636
.
You do not currently have access to this content.