This paper proposes an adaptive self-learning fuzzy autopilot design for uncertain bank-to-turn (BTT) missiles due to external disturbances and system errors from the variations of the aerodynamic coefficients and control surface loss. The self-learning fuzzy systems called extended sequential adaptive fuzzy inference systems (ESAFISs) are utilized to compensate for these uncertainties in an adaptive backstepping architecture. ESAFIS is a real‐time self-learning fuzzy system with simultaneous structure identification and parameter learning. The fuzzy rules of the ESAFIS can be added or deleted based on the input data. Based on the Lyapunov stability theory, adaptation laws are derived to update the consequent parameters of fuzzy rules, which guarantees both tracking performance and stability. The robust control terms with the adaptive bound-estimation schemes are also designed to compensate for modeling errors of the ESAFISs by augmenting the self-learning fuzzy autopilot control laws. The proposed autopilot is validated under the control surface loss, aerodynamic parameter perturbations, and external disturbances. Simulation study is also compared with a conventional backstepping autopilot and a neural autopilot in terms of the tracking ability. The results illustrate that the designed fuzzy autopilot can obtain better steady‐state and transient performance with the dynamically self-learning ability.

References

References
1.
Williams
,
D. E.
, and
Friedland
,
B.
,
1987
, “
Modern Control Theory for Design of Autopilots for Bank-to-Turn Missiles
,”
J. Guid. Control Dyn.
,
10
(
4
), pp.
378
386
.
2.
Carter
,
L. H.
, and
Shamma
,
J. S.
,
1996
, “
Gain-Scheduled Bank-to-Turn Autopilot Design Using Linear Parameter Varying Transformations
,”
J. Guid. Control Dyn.
,
19
(
5
), pp.
1056
1063
.
3.
Schumacher
,
C.
, and
Khargonekar
,
P. P.
,
1998
, “
Stability Analysis of a Missile Control System With a Dynamic Inversion Controller
,”
J. Guid. Control Dyn.
,
21
(
3
), pp.
508
515
.
4.
Lee
,
S.-Y.
,
Lee
,
J.-I.
, and
Ha
,
I.-J.
,
2001
, “
Nonlinear Autopilot for High Maneuverability of Bank-to-Turn Missiles
,”
IEEE Trans. Aerosp. Electron. Syst.
,
37
(
4
), pp.
1236
1253
.
5.
Rong
,
H.-J.
, and
Zhao
,
G.-S.
,
2013
, “
Direct Adaptive Neural Control of Nonlinear Systems With Extreme Learning Machine
,”
Neural Comput. Appl.
,
22
(3), pp.
577
586
.
6.
Xu
,
B.
,
Sun
,
F.
,
Liu
,
H.
, and
Ren
,
J.
,
2012
, “
Adaptive Kriging Controller Design for Hypersonic Flight Vehicle Via Back-Stepping
,”
IET Control Theory Appl.
,
6
(
4
), pp.
487
497
.
7.
Xu
,
B.
, and
Shi
,
Z.
,
2013
, “
Universal Kriging Control of Hypersonic Aircraft Model Using Predictor Model Without Back-Stepping
,”
IET Control Theory Appl.
,
7
(
4
), pp.
573
583
.
8.
Xu
,
B.
,
Yang
,
C.
, and
Shi
,
Z.
,
2014
, “
Reinforcement Learning Output Feedback NN Control Using Deterministic Learning Technique
,”
IEEE Trans. Neural Networks Learn. Syst.
,
25
(
3
), pp.
635
641
.
9.
Suresh
,
S.
,
Omkar
,
S. N.
,
Mani
,
V.
, and
Sundararajan
,
N.
,
2006
, “
Direct Adaptive Neural Flight Controller for F-8 Fighter Aircraft
,”
J. Guid. Control Dyn.
,
29
(
2
), pp.
454
464
.
10.
Suresh
,
S.
,
Omkar
,
S. N.
,
Mani
,
V.
, and
Sundararajan
,
N.
,
2005
, “
Nonlinear Adaptive Neural Controller for Unstable Aircraft
,”
J. Guid. Control Dyn.
,
28
(
6
), pp.
1103
1111
.
11.
Rong
,
H.-J.
,
Han
,
S.
, and
Zhao
,
G.-S.
,
2014
, “
Adaptive Fuzzy Control of Wing-Rock Motion
,”
Appl. Soft Comput.
,
14
(
Pt. B
), pp.
181
193
.
12.
McDowell
,
D. M.
,
Irwin
,
G. W.
,
Lightbody
,
G.
, and
McConnell
,
G.
,
1997
, “
Hybrid Neural Adaptive Control for Bank-to-Turn Missiles
,”
IEEE Trans. Control Syst. Technol.
,
5
(
3
), pp.
297
308
.
13.
Fu
,
L.-C.
,
Chang
,
W.-D.
,
Yang
,
J.-H.
, and
Kuo
,
T.-S.
,
1997
, “
Adaptive Robust Bank-to-Turn Missile Autopilot Design Using Neural Networks
,”
J. Guid. Control Dyn.
,
20
(
2
), pp.
346
354
.
14.
McFarland
,
M. B.
, and
Calise
,
A. J.
,
2000
, “
Adaptive Nonlinear Control of Agile Antiair Missiles Using Neural Networks
,”
IEEE Trans. Control Syst. Technol.
,
8
(
5
), pp.
749
756
.
15.
Geng
,
Z. J.
, and
McCullough
,
C. L.
,
1997
, “
Missile Control Using Fuzzy Cerebellar Model Arithmetic Computer Neural Networks
,”
J. Guid. Control Dyn.
,
20
(
3
), pp.
557
565
.
16.
Lin
,
C.-K.
,
2005
, “
Adaptive Critic Autopilot Design of Bank-to-Turn Missiles Using Fuzzy Basis Function Networks
,”
IEEE Trans. Syst. Man Cybern., Part B
,
35
(
2
), pp.
197
–207.
17.
Uang
,
H.-J.
, and
Chen
,
B.-S.
,
2002
, “
Robust Adaptive Optimal Tracking Design for Uncertain Missile Systems: A Fuzzy Approach
,”
Fuzzy Sets Syst.
,
126
(
1
), pp.
63
87
.
18.
Lin
,
C.-K.
, and
Wang
,
S.-D.
,
1998
, “
A Self-Organizing Fuzzy Control Approach for Bank-to-Turn Missiles
,”
Fuzzy Sets Syst.
,
96
(
3
), pp.
281
306
.
19.
Chen
,
C.-S.
,
2011
, “
Robust Self-Organizing Neural-Fuzzy Control With Uncertainty Observer for MIMO Nonlinear Systems
,”
IEEE Trans. Fuzzy Syst.
,
9
(
4
), pp.
694
706
.
20.
Gao
,
Y.
, and
Er
,
M. J.
,
2003
, “
Online Adaptive Fuzzy Neural Identification and Control of a Class of MIMO Nonlinear Systems
,”
IEEE Trans. Fuzzy Syst.
,
11
(
4
), pp.
462
477
.
21.
Rong
,
H.-J.
,
Sundararajan
,
N.
,
Huang
,
G.-B.
, and
Zhao
,
G.-S.
,
2011
, “
Extended Sequential Adaptive Fuzzy Inference System for Classification Problems
,”
Evol. Syst.
,
2
(
2
), pp.
71
82
.
22.
Lee
,
T.
, and
Kim
,
Y.
,
2001
, “
Nonlinear Adaptive Flight Control Using Backstepping and Neural Networks Controller
,”
J. Guid. Control Dyn.
,
24
(
4
), pp.
675
682
.
23.
Xu
,
B.
,
Sun
,
F.
,
Yang
,
C.
,
Gao
,
D.
, and
Ren
,
J.
,
2011
, “
Adaptive Discrete-Time Controller Design With Neural Network for Hypersonic Flight Vehicle Via Back-Stepping
,”
Int. J. Control
,
84
(
9
), pp.
1543
1552
.
24.
Pashilkar
,
A. A.
,
Sundararajan
,
N.
, and
Saratchandran
,
P.
,
2006
, “
Adaptive Back-Stepping Neural Controller for Reconfigurable Flight Control Systems
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp.
553
561
.
25.
Rong
,
H.-J.
,
Sundararajan
,
N.
,
Huang
,
G.-B.
, and
Saratchandran
,
P.
,
2006
, “
Sequential Adaptive Fuzzy Inference System (SAFIS) for Nonlinear System Identification and Prediction
,”
Fuzzy Sets Syst.
,
157
(
9
), pp.
1260
1275
.
26.
Wang
,
L.-X.
,
1994
,
Adaptive Fuzzy Systems and Control: Design and Stability Analysis
,
Prentice-Hall
,
Upper Saddle River, NJ
.
27.
Sundararajan
,
N.
,
Saratchandran
,
P.
, and
Yan
,
L.
,
2001
,
Fully Tuned Radial Basis Function Neural Networks for Flight Control
,
Kluwer Academic Publishers
,
Boston, MA
.
You do not currently have access to this content.