A modular procedure is presented to simulate moving control surfaces within an overset grid environment using the Navier–Stokes equations. Gaps are modeled by locally shearing the wing grids instead of using separate grids to model gaps. Grid movements for control surfaces are defined through a separate module, which is driven by an external grid generation tool. Results are demonstrated for a wing with a part-span control surface. Grids for the test case are determined from detailed grid sensitivity studies based on both nonoscillating and oscillating cases. Steady and, for the first time, unsteady pressures from overset grid computations are validated with wind tunnel data. This paper addresses the current needs of high-fidelity flow modeling to design advanced active-controls.

References

References
1.
Carey
,
B.
,
2012
, “
BAE Systems Develops Aircraft Active Controls Stick
,” Aviation International News (AIN) Online, Midland Park, NJ, accessed July 10, 2012, http://www.ainonline.com/aviation-news/2012-07-10/bae-systems-develops-civil-aircraft-active-control-stick
2.
Lau
,
B.
,
Obriecht
,
N.
,
Gasow
,
T.
,
Hagerty
,
B.
,
Cheng
,
K.
, and
Sim
,
B.
,
2010
, “
Boeing-SMART Test Report for DARPA Helicopter Quieting Program
,”
NASA
Report No. TM 2010-216404.
3.
Mukhopadhyay
,
V.
,
1998
, “
Transonic Flutter Suppression Control Law Design, Analysis and Wind Tunnel Test Results
,”
Second International Conference on Nonlinear Problems in Aviation and Aerospace
, Daytona Beach, FL, Apr., pp.
45
51
.
4.
Guruswamy
,
G. P.
,
1989
, “
An Integrated Approach for Active Coupling of Structures and Fluids
,”
AIAA J.
,
27
(
6
), pp.
788
793
.
5.
Poling
,
D. R.
,
Dadone
,
L.
, and
Telionis
,
D. P.
,
1989
, “
Blade-Vortex Interaction
,”
AIAA J.
,
27
(
6
), pp.
694
699
.
6.
Obayashi
,
S.
, and
Guruswamy
,
G. P.
,
1994
, “
Navier–Stokes Computations for Oscillating Control Surfaces
,”
J. Aircr.
,
31
(
3
), pp.
631
636
.
7.
Klopfer
,
G. H.
, and
Obayashi
,
S.
,
1993
, “
Virtual Zone Navier–Stokes Computations for Oscillating Control Surfaces
,”
AIAA
Paper No. 93-3363.
8.
Yeh
,
D. T.
,
1995
, “
Aeroelastic Analysis of a Hinged-Flap and Control Surface Effectiveness Using the Navier–Stokes Equations
,”
AIAA
Paper No. 95-02263.
9.
Liggett
,
N.
, and
Smith
,
M.
,
2013
, “
Study of Gap Physics of Airfoils With Unsteady Flaps
,”
J. Aircr.
,
50
(
2
), pp.
643
650
.
10.
Liu
,
L.
,
Padthe
,
A.
,
Friedmann
,
P. P.
,
Quon
,
E.
, and
Smith
,
M.
,
2011
, “
Unsteady Aerodynamics of an Airfoil/Flap Combination on a Helicopter Rotor Using CFD and Approximate Methods
,”
J. Am. Helicopter Soc.
,
56
(
3
), p.
032003
.
11.
Mishra
,
A.
,
Sitaraman
,
J.
,
Baeder
,
J. D.
, and
Opoku
,
D. G.
,
2007
, “
Computational Investigation of Trailing Edge Flap for Control of Vibration
,”
AIAA
Paper No. 2007-4290.
12.
Jain
,
R.
,
Yeo
,
H.
, and
Chopra
,
I.
,
2013
, “
Investigation of Trailing-Edge Flap Gap Effects on Rotor Performance Using High-Fidelity Analysis
,”
J. Aircr.
,
50
(
1
), pp.
140
150
.
13.
Potsdam
,
M.
,
Fulton
,
M. V.
, and
Dimanlig
,
A.
,
2011
, “
Multidisciplinary CFD/CSD Analysis of the SMART Active Flap Rotor
,”
66th Annual Forum of the American Helicopter Society
, Phoenix, AZ, May 11–13.
14.
Nichols
,
R. H.
,
Tramel
,
R. W.
, and
Buning
,
P. G.
,
2006
, “
Solver and Turbulence Model Upgrades to OVERFLOW2 for Unsteady and High-Speed Applications
,”
AIAA
Paper No. 2006-2824.
15.
Obayashi
,
S.
,
Chiu
,
I.
, and
Guruswamy
,
G. P.
,
1995
, “
Navier–Stokes Computations on Full-Span Wing-Body Configuration With Oscillating Control Surfaces
,”
AIAA J.
,
32
(
6
), pp.
1227
1233
.
16.
Bennett
,
R. M.
,
Eckstrom
,
C. V.
,
Rivera
,
J. A.
,
Farmer
,
M. G.
, and
Durham
,
M. H.
,
1991
, “
The Benchmark Aeroelastic Models Program—Description and Highlights of Initial Results
,”
NASA
Report No. TM-107582.
17.
Schuster
,
D. M.
,
Chwalowski
,
P.
,
Heeg
,
J.
, and
Wieseman
,
C.
,
2013
, “
Analysis of Test Case Computations and Experiments for the Aeroelastic Prediction Workshop
,”
AIAA
Paper No. 2013-0788.
18.
Peyret
,
R.
, and
Viviand
,
H.
,
1975
, “
Computation of Viscous Compressible Flows Based on Navier–Stokes Equations
,” Report No. AGARD-AG-212.
19.
Beam
,
R. M.
, and
Warming
,
R. F.
,
1978
, “
An Implicit Factored Scheme for the Compressible Navier–Stokes Equations
,”
AIAA J.
,
16
(
4
), pp.
393
402
.
20.
Spalart
,
P. R.
,
1988
, “
Direct Simulation of a Turbulent Boundary Layer Up to Rθ = 1410
,”
J. Fluid Mech.
,
187
, pp.
61
98
.
21.
Guruswamy
,
G. P.
,
2013
, “
Computations on Wings With Full-Span Oscillating Control Surfaces Using Navier–Stokes Equations
,”
NASA
Report No. TM-2013-216601.
22.
Chan
,
W. M.
,
2011
, “
Developments in Strategies and Software Tools for Overset Structured Grid Generation and Connectivity
,”
AIAA
Paper No. 2011-3051.
23.
Message Passing Interface
,
1994
, “
MPI, A Message-Passing Interface Standard
,” University of Tennessee, Knoxville, TN.
24.
Guruswamy
,
G. P.
,
2000
, “
HiMAP: A Portable Super Modular Multilevel Parallel Multidisciplinary Process for Large Scale Analysis
,”
Adv. Eng. Software
,
31
(
8–9
), pp.
617
620
.
25.
Chapman
,
B.
,
Jost
,
G.
, and
van der Pas
,
R.
,
2008
,
Using OpenMP
,
The MIT Press
,
Cambridge, MA
.
26.
Noack
,
M.
,
2015
, “Behind the Scenes at NASA's Computer Powerhouse,”
Mountain View Voice
, Mountain View, CA.
27.
Guruswamy
,
G. P.
,
2011
, “
Large-Scale Computations for Stability Analysis of Launch Vehicles Using Cluster Computers
,”
J. Spacecr. Rockets
,
48
(
4
), pp.
584
588
.
28.
Guruswamy
,
G. P.
,
2013
, “
Time-Accurate Aeroelastic Computations of a Full Helicopter Model Using the Navier-Stokes Equations
,”
Int. J. Aerosp. Innovations
,
5
(
3–4
), pp.
73
82
.
You do not currently have access to this content.