This paper addresses the issues of admissibility analysis and exponential passivity using sampled-data control for a class of singular networked cascade control systems (NCCSs) with time-varying delays and external disturbances. Based on the new augmented Lyapunov–Krasovskii functional which considers all the available information about the actual sampling pattern, a new set of delay-dependent condition is obtained to ensure the singular networked cascade control systems to be regular, impulse-free, stable, and exponentially passive. Based on the derived condition, the sampled-data control problem is solved and an explicit expression for the desired cascade controller is given. If the given linear matrix inequalities are feasible, then corresponding gain parameters of the designed cascade control will be determined. Finally, a numerical example based on a power plant boiler–turbine system is provided to demonstrate the effectiveness of the developed technique.

References

References
1.
Dong
,
X. Z.
, and
Xiao
,
M. H.
,
2015
, “
H∞ Control of Singular Systems Via Delta Operator Method
,”
Int. J. Control Autom. Syst.
,
13
(
3
), pp.
643
651
.
2.
Wang
,
G.
,
Bo
,
H.
, and
Zhang
,
Q.
,
2015
, “
H∞ Filtering for Time-Delayed Singular Markovian Jump Systems With Time-Varying Switching: A Quantized Method
,”
Signal Process.
,
109
, pp.
14
24
.
3.
Wang
,
G.
,
2015
, “
Stochastic Stabilization of Singular Systems With Markovian Switchings
,”
Appl. Math. Comput.
,
250
, pp.
390
401
.
4.
Wang
,
Y.
,
Zhang
,
S.
,
Li
,
Y.
, and
Zhuang
,
G.
,
2015
, “
Fault Detection for Singular Networked Control Systems With Randomly Occurring Delays and Partially Known Distribution Transmission Delays
,”
Trans. Inst. Meas. Control
,
37
(
4
), pp.
446
456
.
5.
Hien
,
L. V.
,
Vu
,
L. H.
, and
Phat
, V
. N.
,
2015
, “
Improved Delay-Dependent Exponential Stability of Singular Systems With Mixed Interval Time-Varying Delays
,”
IET Control Theory Appl.
,
9
(9), pp.
1364
1372
.
6.
Kao
,
Y. G.
,
Xie
,
J.
, and
Wang
,
C. H.
,
2014
, “
Stabilisation of Mode-Dependent Singular Markovian Jump Systems With Generally Uncertain Transition Rates
,”
Appl. Math. Comput.
,
245
, pp.
243
254
.
7.
Lin
,
J.
,
Shi
,
Y.
,
Fei
,
S.
, and
Gao
,
Z.
,
2013
, “
Reliable Dissipative Control of Discrete-Time Switched Singular Systems With Mixed Time Delays and Stochastic Actuator Failures
,”
IET Control Theory Appl.
,
7
(11), pp.
1447
1462
.
8.
Liu
,
Y.
, and
Li
,
M.
,
2014
, “
An Improved Delay-Dependent Stability Criterion of Networked Control Systems
,”
J. Franklin Inst.
,
351
(
3
), pp.
1540
1552
.
9.
Li
,
H.
,
Wu
,
C.
,
Shi
,
P.
, and
Gao
,
Y.
,
2015
, “
Control of Nonlinear Networked Systems With Packet Dropouts: Interval Type-2 Fuzzy Model-Based Approach
,”
IEEE Trans. Cybern.
,
45
(
11
), pp.
2378
2389
.
10.
Wu
,
D.
,
Wu
,
J.
, and
Chen
,
S.
,
2010
, “
Robust Stabilisation Control for Discrete-Time Networked Control Systems
,”
Int. J. Control
,
83
(
9
), pp.
1885
1894
.
11.
Zhang
,
L.
,
Gao
,
H.
, and
Kaynak
,
O.
,
2013
, “
Network-Induced Constraints in Networked Control Systems-A Survey
,”
IEEE Trans. Ind. Inf.
,
9
(
1
), pp.
403
416
.
12.
Long
,
Y.
, and
Yang
,
G. H.
,
2015
, “
Robust Fault Detection for Networked Control Systems With Packet Dropouts: An Average Dwell Time Method
,”
Optim. Control Appl. Methods
,
36
(
2
), pp.
179
197
.
13.
Zhou
,
L.
, and
Xiao
,
X.
,
2014
, “
Networked Control for Singular Systems Over Unreliable Channel With Limited Capacity
,”
Circuits, Syst. Signal Process.
,
33
(
11
), pp.
3443
3455
.
14.
Yang
,
F.
,
Zhang
,
H.
,
Liu
,
Z.
, and
Li
,
R.
,
2014
, “
Delay-Dependent Resilient-Robust Stabilisation of Uncertain Networked Control Systems With Variable Sampling Intervals
,”
Int. J. Syst. Sci.
,
45
(
3
), pp.
497
508
.
15.
Li
,
H.
,
Jing
,
X.
,
Lam
,
H. K.
, and
Shi
,
P.
,
2014
, “
Fuzzy Sampled-Data Control for Uncertain Vehicle Suspension Systems
,”
IEEE Trans. Cybern.
,
44
(7), pp.
1111
1126
.
16.
Sakthivel
,
R.
,
Selvi
,
S.
, and
Mathiyalagan
,
K.
,
2015
, “
Fault-Tolerant Sampled-Data Control of Flexible Spacecraft With Probabilistic Time Delays
,”
Nonlinear Dyn.
,
79
(
3
), pp.
1835
1846
.
17.
Li
,
S.
,
Yang
,
L.
,
Li
,
K.
, and
Gao
,
Z.
,
2014
, “
Robust Sampled-Data Cruise Control Scheduling of High Speed Train
,”
Transp. Res. Part C: Emerging Technol.
,
46
, pp.
274
283
.
18.
Wang
,
Z. P.
, and
Wu
,
H. N.
,
2015
, “
On Fuzzy Sampled-Data Control of Chaotic Systems Via a Time-Dependent Lyapunov Functional Approach
,”
IEEE Trans. Cybern.
,
45
(
4
), pp.
819
829
.
19.
Sakthivel
,
R.
,
Selvaraj
,
P.
,
Mathiyalagan
,
K.
, and
Park
,
J. H.
,
2015
, “
Robust Fault-Tolerant H∞ Control for Offshore Steel Jacket Platforms Via Sampled-Data Approach
,”
J. Franklin Inst.
,
352
(
6
), pp.
2259
2279
.
20.
Wang
,
J.
, and
Zhao
,
J.
,
2014
, “
Stability Analysis and Control Synthesis for a Class of Cascade Switched Nonlinear Systems With Actuator Saturation
,”
Circuits, Syst. Signal Process.
,
33
(
9
), pp.
2961
2970
.
21.
Du
,
Z.
,
Yue
,
D.
, and
Hu
,
S.
,
2014
, “
H∞ Stabilization for Singular Networked Cascade Control Systems With State Delay and Disturbance
,”
IEEE Trans. Ind. Inf.
,
10
(2), pp.
882
894
.
22.
Guo
,
C.
,
Song
,
Q.
, and
Cai
,
W.
,
2007
, “
A Neural Network Assisted Cascade Control System for Air Handling Unit
,”
IEEE Trans. Ind. Electron.
,
54
(
1
), pp.
620
628
.
23.
Zhang
,
F.
,
Duan
,
G. R.
, and
Zhou
,
B.
,
2013
, “
Robust Adaptive Control for a Class of Cascaded Nonlinear Systems With Applications to Space Interception
,”
Int. J. Robust Nonlinear Control
,
24
(15), pp.
2048
2078
.
24.
Huang
,
C.
,
Bai
,
Y.
, and
Liu
,
X.
,
2010
, “
H∞ State Feedback Control for a Class of Networked Cascade Control Systems With Uncertain Delay
,”
IEEE Trans. Ind. Inf.
,
6
(
1
), pp.
62
72
.
25.
Long
,
L.
, and
Zhao
,
J.
,
2015
, “
Switched Adaptive Stabilization of Switched Nonlinearly Parameterized Cascade Systems and Its Application to a Two Inverted Pendulums
,”
Int. J. Adapt. Control Signal Process.
,
29
(
3
), pp.
346
361
.
26.
Wu
,
Y.
,
Guan
,
Z. H.
,
Feng
,
G.
, and
Liu
,
F.
,
2013
, “
Passivity-Based Control of Hybrid Impulsive and Switching Systems With Singular Structure
,”
J. Franklin Inst.
,
350
(
6
), pp.
1500
1512
.
27.
Wu
,
Z. G.
,
Park
,
J. H.
,
Su
,
H.
, and
Chu
,
J.
,
2012
, “
New Results on Exponential Passivity of Neural Networks With Time-Varying Delays
,”
Nonlinear Anal.: Real World Appl.
,
13
(
4
), pp.
1593
1599
.
28.
Lian
,
J.
,
Shi
,
P.
, and
Feng
,
Z.
,
2013
, “
Passivity and Passification for a Class of Uncertain Switched Stochastic Time-Delay Systems
,”
IEEE Trans. Cybern.
,
43
(
1
), pp.
3
13
.
29.
Du
,
Y.
,
Zhong
,
S.
,
Xu
,
J.
, and
Zhou
,
N.
,
2015
, “
Delay-Dependent Exponential Passivity of Uncertain Cellular Neural Networks With Discrete and Distributed Time-Varying Delays
,”
ISA Trans.
,
56
, pp.
1
7
.
30.
Du
,
Y.
,
Zhong
,
S.
,
Zhou
,
N.
,
Nie
,
L.
, and
Wang
,
W.
,
2013
, “
Exponential Passivity of BAM Neural Networks With Time-Varying Delays
,”
Appl. Math. Comput.
,
221
, pp.
727
740
.
31.
Wu
,
A.
, and
Zeng
,
Z.
,
2014
, “
Exponential Passivity of Memristive Neural Networks With Time Delays
,”
Neural Networks
,
49
, pp.
11
18
.
32.
Wu
,
G.
, and
Zhang
,
J.
,
2013
, “
Reliable Passivity and Passification for Singular Markovian Systems
,”
IMA J. Math. Control Inf.
,
30
(
2
), pp.
155
168
.
You do not currently have access to this content.