Nowadays, the quadrotor is becoming a popular platform in the academic field and the commercial area. Many prototypes have been developed for different applications. In this paper, we present the design and development of a quadrotor system with the function of aerial surveillance for trajectory tracking. Kinematics and dynamics models of the quadrotor are given by Newton–Euler method. A nonlinear controller based on trajectory linearization control approach is designed to stabilize the quadrotor. This controller is divided into two parts as the guidance controller and the attitude controller, which control the translational motion and rotational motion, respectively. A quadrotor prototype is developed to implement the controller. A control strategy is provided for the autonomous flight with procedures of mission planning, trajectory generation, control, and hardware. Simulation tests are used to validate the robustness and the performance of the controller. Several flight experiments have been implemented outdoors. The simulation and experimental results show that the proposed controller performs well in trajectory tracking mission, and the appointed functions of this quadrotor system also work well.

References

References
1.
Bouabdallah
,
S.
,
Becker
,
M.
, and
Siegwart
,
R.
,
2007
, “
Autonomous Miniature Flying Robots: Coming Soon!—Research, Development, and Results
,”
IEEE Rob. Autom. Mag.
,
14
(
3
), pp.
88
98
.
2.
Castillo
,
P.
,
Dzul
,
A.
, and
Lozano
,
R.
,
2004
, “
Real-Time Stabilization and Tracking of a Four-Rotor Mini Rotorcraft
,”
IEEE Trans. Control Syst. Technol.
,
12
(
4
), pp.
510
516
.
3.
Ren
,
W.
, and
Beard
,
R. W.
,
2004
, “
Trajectory Tracking for Unmanned Air Vehicles With Velocity and Heading Rate Constraints
,”
IEEE Trans. Control Syst. Technol.
,
12
(
5
), pp.
706
716
.
4.
Bouabdallah
,
S.
,
Noth
,
A.
, and
Siegwart
,
R.
,
2004
, “
PID vs LQ Control Techniques Applied to an Indoor Micro Quadrotor
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Sept. 28–Oct. 2, Vol.
3
, pp.
2451
2456
.
5.
Madani
,
T.
, and
Benallegue
,
A.
,
2006
, “
Control of a Quadrotor Mini-Helicopter Via Full State Backstepping Technique
,”
45th IEEE Conference on Decision and Control
(
CDC
), Dec. 13–15, pp.
1515
1520
.
6.
Xu
,
R.
, and
Özgüner
,
Ü.
,
2006
, “
Sliding Mode Control of a Quadrotor Helicopter
,”
45th IEEE Conference on Decision and Control
(
CDC
), Dec. 13–15, pp.
4957
4962
.
7.
Hoffmann
,
G. M.
,
Huang
,
H.
,
Waslander
,
S. L.
, and
Tomlin
,
C. J.
,
2007
, “
Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment
,”
AIAA
Paper No. 2007-6461.
8.
Raffo
,
G. V.
,
Ortega
,
M. G.
, and
Rubio
,
F. R.
,
2008
, “
Backstepping/Nonlinear H∞ Control for Path Tracking of a Quadrotor Unmanned Aerial Vehicle
,”
American Control Conference
(
ACC
), Washington, DC, June 11–13, pp.
3356
3361
.
9.
Kendoul
,
F.
,
Yu
,
Z.
, and
Nonami
,
K.
,
2009
, “
Guidance and Nonlinear Control System for Autonomous Flight of Minirotorcraft Unmanned Aerial Vehicles
,”
J. Field Rob.
,
27
(
3
), pp.
311
334
.
10.
Das
,
A.
,
Subbarao
,
K.
, and
Lewis
,
F.
,
2009
, “
Dynamic Inversion With Zero-Dynamics Stabilisation for Quadrotor Control
,”
IET Control Theory Appl.
,
3
(
3
), pp.
303
314
.
11.
Zhou
,
Q.-L.
,
Zhang
,
Y.
,
Rabbath
,
C.-A.
, and
Theilliol
,
D.
,
2010
, “
Design of Feedback Linearization Control and Reconfigurable Control Allocation With Application to a Quadrotor UAV
,”
Conference on Control and Fault-Tolerant Systems
(
SysTol
), IEEE, Nice, France, Oct. 6–8, pp.
371
376
.
12.
Lee
,
T.
,
Leoky
,
M.
, and
McClamroch
,
N. H.
,
2010
, “
Geometric Tracking Control of a Quadrotor UAV on SE(3)
,”
49th IEEE Conference on Decision and Control
(
CDC
), Dec. 15–17, pp.
5420
5425
.
13.
Goodarzi
,
F. A.
,
Lee
,
D.
, and
Lee
,
T.
,
2015
, “
Geometric Adaptive Tracking Control of a Quadrotor Unmanned Aerial Vehicle on SE(3) for Agile Maneuvers
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
9
), p.
091007
.
14.
Kim
,
J.
,
Kang
,
M. S.
, and
Park
,
S.
,
2010
, “
Accurate Modeling and Robust Hovering Control for a Quad-Rotor VTOL Aircraft
,”
J. Intell. Rob. Syst.
,
57
, pp.
9
26
.
15.
Lee
,
D.
,
Nataraj
,
C.
,
Burg
,
T. C.
, and
Dawson
,
D. M.
,
2011
, “
Adaptive Tracking Control of an Underactuated Aerial Vehicle
,”
American Control Conference
(
ACC
), IEEE, New York, June 29–July 1, pp.
2326
2331
.http://ieeexplore.ieee.org/document/5991594/
16.
Mellinger
,
D.
,
Michael
,
N.
, and
Kumar
,
V.
,
2012
, “
Trajectory Generation and Control for Precise Aggressive Maneuvers With Quadrotors
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
664
674
.
17.
Alexis
,
K.
,
Nikolakopoulos
,
G.
, and
Tzes
,
A.
,
2012
, “
Model Predictive Quadrotor Control: Attitude, Altitude and Position Experimental Studies
,”
IET Control Theory Appl.
,
6
(
12
), pp.
1812
1827
.
18.
Liu
,
H.
,
Bai
,
Y.
,
Lu
,
G.
,
Shi
,
Z.
, and
Zhong
,
Y.
,
2014
, “
Robust Tracking Control of a Quadrotor Helicopter
,”
J. Intell. Rob. Syst.
,
75
(
3–4
), pp.
595
608
.
19.
Cabecinhas
,
D.
,
Cunha
,
R.
, and
Silvestre
,
C.
,
2014
, “
A Nonlinear Quadrotor Trajectory Tracking Controller With Disturbance Rejection
,”
Control Eng. Pract.
,
26
, pp.
1
10
.
20.
Choi
,
Y. C.
, and
Ahn
,
H. S.
,
2015
, “
Nonlinear Control of Quadrotor for Point Tracking: Actual Implementation and Experimental Tests
,”
IEEE/ASME Trans. Mechatronics
,
20
(
3
), pp.
1179
1192
.
21.
Kendoul
,
F.
,
2012
, “
Survey of Advances in Guidance, Navigation, and Control of Unmanned Rotorcraft Systems
,”
J. Field Rob.
,
29
(
2
), pp.
315
378
.
22.
Mahony
,
R.
,
Kumar
,
V.
, and
Corke
,
P.
,
2012
, “
Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor
,”
IEEE Rob. Autom. Mag.
,
19
(
3
), pp.
20
32
.
23.
Yu
,
Y.
, and
Ding
,
X.
,
2012
, “
A Quadrotor Test Bench for Six Degree of Freedom Flight
,”
J. Intell. Rob. Syst.
, 68(3–4), pp.
323
338
.
24.
Huang
,
R.
,
Liu
,
Y.
, and
Zhu
,
J. J.
,
2009
, “
Guidance, Navigation, and Control System Design for Tripropeller Vertical-Takeoff-and-Landing Unmanned Air Vehicle
,”
J. Aircr.
,
46
(
6
), pp.
1837
1856
.
25.
Ding
,
X.
, and
Wang
,
X.
,
2014
, “
Design and Realization of Ground Control Station for Multi-Propeller Multifunction Aerial Robot
,”
IEEE International Conference on Mechatronics and Automation
(
ICMA
), Aug. 3–6, pp.
227
232
.
You do not currently have access to this content.