Rolling bearings are key components in most mechanical facilities; hence, the diagnosis of their faults is very important in predictive maintenance. Up to date, vibration analysis has been widely used for fault diagnosis in practice. However, acoustic analysis is still a novel approach. In this study, acoustic analysis with classification is used for fault diagnosis of rolling bearings. First, Hilbert transform (HT) and power spectral density (PSD) are used to extract features from the original sound signal. Then, decision tree algorithm C5.0, support vector machines (SVMs) and the ensemble method boosting are used to build models to classify the instances for three different classification tasks. Performances of the classifiers are compared w.r.t. accuracy and receiver operating characteristic (ROC) curves. Although C5.0 and SVM show comparable performances, C5.0 with boosting classifier indicates the highest performance and perfectly discriminates normal instances from the faulty ones in each task. The defect sizes to create faults used in this study are notably small compared to previous studies. Moreover, fault diagnosis is done for rolling bearings operating at different loading conditions and speeds. Furthermore, one of the classification tasks incorporates diagnosis of five states including four different faults. Thus, these models, due to their high performance in classifying multiple defect scenarios having different loading conditions and speeds, can be readily implemented and applied to real-life situations to detect and classify even incipient faults of rolling bearings of any rotating machinery.

References

References
1.
Zhang
,
Y. X.
, and
Randall
,
R. B.
,
2009
, “
Rolling Element Bearing Fault Diagnosis Based on the Combination of Genetic Algorithms and Fast Kurtogram
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1509
1517
.
2.
Pan
,
M. C.
, and
Tsao
,
W. C.
,
2013
, “
Using Appropriate IMFs for Envelope Analysis in Multiple Fault Diagnosis of Ball Bearings
,”
Int. J. Mech. Sci.
,
69
, pp.
114
124
.
3.
Tandon
,
N.
, and
Choudhury
,
A.
,
1999
, “
A Review of Vibration and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
,
32
(
8
), pp.
469
480
.
4.
Zhen
,
L.
,
Zhengjia
,
H.
,
Yanyang
,
Z.
, and
Yanxue
,
W.
,
2008
, “
Customized Wavelet Denoising Using Intra-and Inter-Scale Dependency for Bearing Fault Detection
,”
J. Sound Vib.
,
313
(
1–2
), pp.
342
359
.
5.
De Moura
,
E.
,
Souto
,
C.
,
Silva
,
A.
, and
Irmao
,
M.
,
2011
, “
Evaluation of Principal Component Analysis and Neural Network Performance for Bearing Fault Diagnosis From Vibration Signal Processed by RS and DF Analyses
,”
Mech. Syst. Signal Process.
,
25
(
5
), pp.
1765
1772
.
6.
Gryllias
,
K. C.
, and
Antoniadis
,
I. A.
,
2012
, “
A Support Vector Machine Approach Based on Physical Model Training for Rolling Element Bearing Fault Detection in Industrial Environments
,”
Eng. Appl. Artif. Intell.
,
25
(
2
), pp.
326
344
.
7.
Sun
,
W.
,
Yang
,
G. A.
,
Chen
,
Q.
,
Palazoglu
,
A.
, and
Feng
,
K.
,
2013
, “
Fault Diagnosis of Rolling Bearing Based on Wavelet Transform and Envelope Spectrum Correlation
,”
J. Vib. Control
,
19
(
6
), pp.
924
941
.
8.
Kedadouche
,
M.
,
Thomas
,
M.
, and
Tahan
,
A.
,
2014
, “
Empirical Mode Decomposition of Acoustic Emission for Early Detection of Bearing Defects
,”
Advances in Condition Monitoring of Machinery in Non-Stationary Operations
,
Springer
, Berlin, pp.
367
377
.
9.
Germen
,
E.
,
Basaran
,
M.
, and
Fidan
,
M.
,
2014
, “
Sound Based Induction Motor Fault Diagnosis Using Kohonen Self-Organizing Map
,”
Mech. Syst. Signal Process.
,
46
(
1
), pp.
45
58
.
10.
Peng
,
Z.
, and
Kessissoglou
,
N.
,
2003
, “
An Integrated Approach to Fault Diagnosis of Machinery Using Wear Debris and Vibration Analysis
,”
Wear
,
255
(
7–12
), pp.
1221
1232
.
11.
Peng
,
Z.
,
Kessissoglou
,
N. J.
, and
Cox
,
M.
,
2005
, “
A Study of the Effect of Contaminant Particles in Lubricants Using Wear Debris and Vibration Condition Monitoring Techniques
,”
Wear
,
258
(
11–12
), pp.
1651
1662
.
12.
Ebersbach
,
S.
,
Peng
,
Z.
, and
Kessissoglou
,
N. J.
,
2006
, “
The Investigation of the Condition and Faults of a Spur Gearbox Using Vibration and Wear Debris Analysis Techniques
,”
Wear
,
260
(
1–2
), pp.
16
24
.
13.
Rai
,
V. K.
, and
Mohanty
,
A. R.
,
2007
, “
Bearing Fault Diagnosis Using FFT of Intrinsic Mode Functions in Hilbert-Huang Transform
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2607
2615
.
14.
Hao
,
R.
,
Feng
,
Z.
, and
Chu
,
F.
,
2010
, “
Application of Support Vector Machine Based on Pattern Spectrum Entropy in Fault Diagnostics of Bearings
,”
2010 Prognostics and Health Management Conference
,
PHM’10
, Portland, OR, Oct. 10–16, pp.
1
6
.
15.
Wang
,
C. C.
,
Kang
,
Y.
,
Shen
,
P. C.
,
Chang
,
Y. P.
, and
Chung
,
Y. L.
,
2010
, “
Applications of Fault Diagnosis in Rotating Machinery by Using Time Series Analysis With Neural Network
,”
Expert Syst. Appl.
,
37
(
2
), pp.
1696
1702
.
16.
Prieto
,
M. D.
,
Cirrincione
,
G.
,
Espinosa
,
A. G.
,
Ortega
,
J.
, and
Henao
,
H.
,
2013
, “
Bearing Faults Detection by a Novel Condition Monitoring Scheme Based on Statistical-Time Features and Neural Networks
,”
IEEE Trans. Ind. Electron.
,
60
(
8
), pp.
3398
3407
.
17.
Zhen
,
L.
,
Zhengjia
,
H.
,
Yanyang
,
Z.
, and
Xuefeng
,
C.
,
2008
, “
Bearing Condition Monitoring Based on Shock Pulse Method and Improved Redundant Lifting Scheme
,”
Math. Comput. Simul.
,
79
(
3
), pp.
318
338
.
18.
Amarnath
,
M.
, and
Sugumaran
,
V.
,
2012
, “
Exploiting Sound Signals for Fault Diagnosis of Bearings Using Decision Tree
,”
Measurement
,
46
(
3
), pp.
1250
1256
.
19.
Kumar
,
H.
,
Kumar
,
T. A. R.
,
Amarnath
,
M.
, and
Sugumaran
,
V.
,
2012
, “
Fault Diagnosis of Antifriction Bearings Through Sound Signals Using Support Vector Machine
,”
J. Vibroengineering
,
14
(4), pp.
1601
1606
.https://www.researchgate.net/publication/244994254_887_Fault_diagnosis_of_antifriction_bearings_through_sound_signals_using_Support_Vector_Machine
20.
Sheen
,
Y. T.
,
2007
, “
An Analysis Method for the Vibration Signal With Amplitude Modulation in a Bearing System
,”
J. Sound Vib.
,
303
(
3–5
), pp.
538
552
.
21.
Wang
,
D.
, and
Tse
,
P. W.
,
2012
, “
A New Blind Fault Component Separation Algorithm for a Single-Channel Mechanical Signal Mixture
,”
J. Sound Vib.
,
331
(
22
), pp.
4956
4970
.
22.
Igarashi
,
T.
, and
Yabe
,
S.
,
1983
, “
Studies on the Vibration and Sound of Defective Rolling Bearings. (Second Report: Sound of Ball Bearings With One Defect)
,”
Bull. JSME
,
26
(
220
), pp.
1791
1798
.
23.
Heng
,
R. B. W.
, and
Nor
,
M. J. M.
,
1998
, “
Statistical Analysis of Sound and Vibration Signals for Monitoring Rolling Element Bearing Condition
,”
Appl. Acoust.
,
53
(
1–3
), pp.
211
226
.
24.
Tandon
,
N.
, and
Nakra
,
B. C.
,
1990
, “
The Application of the Sound-Intensity Technique to Defect Detection in Rolling-Element Bearings
,”
Appl. Acoust.
,
29
(
3
), pp.
207
217
.
25.
He
,
Q.
,
Wang
,
J.
,
Hu
,
F.
, and
Kong
,
F.
,
2013
, “
Wayside Acoustic Diagnosis of Defective Train Bearings Based on Signal Resampling and Information Enhancement
,”
J. Sound Vib.
,
332
(
21
), pp.
5635
5649
.
26.
Yu
,
D. J.
,
Cheng
,
J. S.
, and
Yang
,
Y.
,
2005
, “
Application of EMD Method and Hilbert Spectrum to the Fault Diagnosis of Roller Bearings
,”
Mech. Syst. Signal Process.
,
19
(
2
), pp.
259
270
.
27.
Peng
,
Z. K.
,
Tse
,
P. W.
, and
Chu
,
F. L.
,
2005
, “
An Improved Hilbert-Huang Transform and Its Application in Vibration Signal Analysis
,”
J. Sound Vib.
,
286
(
1–2
), pp.
187
205
.
28.
Yu
,
D.
,
Cheng
,
J.
, and
Yang
,
Y.
,
2005
, “
Application of EMD Method and Hilbert Spectrum to the Fault Diagnosis of Roller Bearings
,”
Mech. Syst. Signal Process.
,
19
(
2
), pp.
259
270
.
29.
Qin
,
Y.
,
Qin
,
S. R.
, and
Mao
,
Y. F.
,
2008
, “
Research on Iterated Hilbert Transform and Its Application in Mechanical Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
22
(
8
), pp.
1967
1980
.
30.
Sugumaran
,
V.
, and
Ramachandran
,
K. I.
,
2007
, “
Automatic Rule Learning Using Decision Tree for Fuzzy Classifier in Fault Diagnosis of Roller Bearing
,”
Mech. Syst. Signal Process.
,
21
(
5
), pp.
2237
2247
.
31.
Boumahdi
,
M.
,
Dron
,
J.-P.
,
Rechak
,
S.
, and
Cousinard
,
O.
,
2010
, “
On the Extraction of Rules in the Identification of Bearing Defects in Rotating Machinery Using Decision Tree
,”
Expert Syst. Appl.
,
37
(
8
), pp.
5887
5894
.
32.
Saimurugan
,
M.
,
Ramachandran
,
K. I.
,
Sugumaran
,
V.
, and
Sakthivel
,
N. R.
,
2011
, “
Multi Component Fault Diagnosis of Rotational Mechanical System Based on Decision Tree and Support Vector Machine
,”
Expert Syst. Appl.
,
38
(
4
), pp.
3819
3826
.
33.
Hao
,
R. J.
,
Peng
,
Z. K.
,
Feng
,
Z. P.
, and
Chu
,
F. L.
,
2011
, “
Application of Support Vector Machine Based on Pattern Spectrum Entropy in Fault Diagnostics of Rolling Element Bearings
,”
Meas. Sci. Technol.
,
22
(
4
), p.
045708
.
34.
Shen
,
Z.
,
Yao
,
N.
,
Dong
,
H.
, and
Yao
,
Y.
,
2014
, “
Application of Twin Support Vector Machine for Fault Diagnosis of Rolling Bearing
,”
Mechatronics and Automatic Control Systems
,
Springer International Publishing
, Cham, Switzerland, pp.
161
167
.
35.
Konar
,
P.
, and
Chattopadhyay
,
P.
,
2011
, “
Bearing Fault Detection of Induction Motor Using Wavelet and Support Vector Machines (SVMs)
,”
Appl. Soft Comput.
,
11
(
6
), pp.
4203
4211
.
36.
Wu
,
S. D.
,
Wu
,
P. H.
,
Wu
,
C. W.
,
Ding
,
J. J.
, and
Wang
,
C. C.
,
2012
, “
Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine
,”
Entropy
,
14
(
12
), pp.
1343
1356
.
37.
Sugumaran
,
V.
, and
Ramachandran
,
K. I.
,
2011
, “
Effect of Number of Features on Classification of Roller Bearing Faults Using SVM and PSVM
,”
Expert Syst. Appl.
,
38
(
4
), pp.
4088
4096
.
38.
Zhang
,
X. L.
,
Chen
,
X. F.
, and
He
,
Z. J.
,
2010
, “
Fault Diagnosis Based on Support Vector Machines With Parameter Optimization by an Ant Colony Algorithm
,”
Proc. Inst. Mech. Eng., Part C
,
224
(
1
), pp.
217
229
.
39.
Yang
,
B. S.
,
Han
,
T.
, and
An
,
J. L.
,
2004
, “
ART-KOHONEN Neural Network for Fault Diagnosis of Rotating Machinery
,”
Mech. Syst. Signal Process.
,
18
(
3
), pp.
645
657
.
40.
Lebold
,
M.
,
McClintic
,
K.
,
Campbell
,
R.
,
Byington
,
C.
, and
Maynard
,
K.
,
2000
, “
Review of Vibration Analysis Methods for Gearbox Diagnostics and Prognostics
,”
54th Meeting of the Society for Machinery Failure Prevention Technology
, Virginia Beach, VA, May 1–4, pp.
623
634
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.9240&rep=rep1&type=pdf
41.
Brüel&Kjaer
, 2014, “
Detecting Faulty Rolling-Element Bearings
,”
Brüel&Kjaer World Headquarters
, Naerum, Denmark.https://www.bksv.com/media/doc/BO0210.pdf
42.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Snin
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N. C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hubert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. A
,
454
(
1971
), pp.
903
995
.
43.
Senyurek
,
V. Y.
,
2015
, “
Detection of Cuts and Impact Damage at the Aircraft Wing Slat by Using Lamb Wave Method
,”
Measurement
,
67
, pp.
10
23
.
44.
Yiğit
,
A.
,
2008
, “
Detection of Rolling Element Bearing Faults Via Vibration Analysis
,”
Masters thesis
, Yüksek Lisans, Fen Bilimleri Enstitüsü, Dokuz Eylül Üniversitesi, İzmir, Turkey.http://acikerisim.deu.edu.tr/xmlui/bitstream/handle/12345/8440/243687.pdf?sequence=1&isAllowed=y
45.
Mohammed
,
A.
,
Neilson
,
R.
,
Deans
,
W.
, and
MacConnell
,
P.
,
2013
, “
Crack Detection in a Rotating Shaft Using Artificial Neural Networks and PSD Characterisation
,”
Meccanica
,
49
(2), pp.
255
266
.
46.
Benko
,
U.
,
Petrovcic
,
J.
,
Juricic
,
D.
,
Tavcar
,
J.
,
Rejec
,
J.
, and
Stefanovska
,
A.
,
2004
, “
Fault Diagnosis of a Vacuum Cleaner Motor by Means of Sound Analysis
,”
J. Sound Vib.
,
276
(
3–5
), pp.
781
806
.
47.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. learn.
,
20
(3), pp. 273–297.
48.
Quinlan
,
R.
,
2013
, “
C5.0: An Informal Tutorial
,” Rulequest Research, Empire Bay NSW, Australia, accessed May 1, 2014, http://www.rulequest.com/see5-unix.html
49.
Breiman
,
L.
,
Friedman
,
J. H.
,
Olshen
,
R. A.
, and
Stone
,
P. J.
,
1984
,
Classification and Regression Trees
,
Wadsworth International Group
, Belmont,
CA
.
50.
Kass
,
G. V.
,
1980
, “
An Exploratory Technique for Investigating Large Quantities of Categorical Data
,”
Appl. Stat.
,
29
(
2
), pp.
119
127
.
51.
Schapire
,
R. E.
,
1990
, “
The Strength of Weak Learnability
,”
Mach. Learn.
,
5
(2), pp.
197
227
.
52.
Breiman
,
L.
,
1998
, “
Arcing Classifier (With Discussion and a Rejoinder by the Author)
,”
Ann. Stat.
,
26
(3), pp.
801
849
.https://projecteuclid.org/download/pdf_1/euclid.aos/1024691079
53.
Tan
,
P.-N.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2006
,
Introduction to Data Mining
,
Pearson, Essex
,
UK
.
54.
Al-Ghamd
,
A. M.
, and
Mba
,
D.
,
2006
, “
A Comparative Experimental Study on the Use of Acoustic Emission and Vibration Analysis for Bearing Defect Identification and Estimation of Defect Size
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1537
1571
.
55.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Machine Learning Methods
,”
Expert Syst. Appl.
,
38
(
3
), pp.
1876
1886
.
56.
Lei
,
Y. G.
,
Lin
,
J.
,
He
,
Z. J.
, and
Zi
,
Y. Y.
,
2011
, “
Application of an Improved Kurtogram Method for Fault Diagnosis of Rolling Element Bearings
,”
Mech. Syst. Signal Process.
,
25
(
5
), pp.
1738
1749
.
57.
Sugumaran
,
V.
, and
Ramachandran
,
K. I.
,
2011
, “
Fault Diagnosis of Roller Bearing Using Fuzzy Classifier and Histogram Features With Focus on Automatic Rule Learning
,”
Expert Syst. Appl.
,
38
(
5
), pp.
4901
4907
.
You do not currently have access to this content.