This paper demonstrates that the Coulomb friction, the most difficult part of friction to be compensated because of its discontinuity with respect to the velocity, can be precisely compensated without either its mathematical model or a velocity measurement, as commonly required in the literature. Instead, the necessary information needed in the friction compensation is obtained in real time from an implicit extended observer in the context of a common proportional-derivative motion control system, using the proposed linear reference compensation scheme. The robustness of this particular observer design to the time-delay uncertainty resulting from the model reduction is thoroughly investigated, which illustrates the extent to which a high bandwidth can be employed to achieve the favorable dynamic performance such that the limitation on the bandwidth of the original extended state observer (ESO) can be effectively eliminated. Finally, numerical examples are provided to validate the proposed method.

References

1.
Armstrong-Hlouvry
,
B.
,
Dupont
,
P.
, and
De Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machine With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.
2.
Friedland
,
B.
, and
Park
,
Y. J.
,
1992
, “
On Adaptive Friction Compensation
,”
IEEE Trans. Autom. Control
,
37
(
10
), pp.
1609
1612
.
3.
Olsson
,
H.
,
Astrom
,
K. J.
,
Canudas de Wit
,
C.
,
Gafvert
,
M.
, and
Lischinky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.
4.
Liao
,
T. H.
, and
Chien
,
T. I.
,
2000
, “
An Exponentially Stable Adaptive Friction Compensator
,”
IEEE Trans. Autom. Control
,
45
(
5
), pp.
977
980
.
5.
Southward
,
S. C.
,
Radcliffe
,
C. J.
, and
MacCluer
,
C. R.
,
1991
, “
Robust Nonlinear Stick-Slip Friction Compensation
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
40
), pp.
639
644
.
6.
Papadopoulos
,
E. G.
, and
Chasparis
,
G. C.
,
2004
, “
Analysis and Model-Based Control of Servomechanisms With Friction
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
4
), pp.
911
915
.
7.
Du
,
C.
,
Xie
,
L.
, and
Zhang
,
J.
,
2010
, “
Compensation of VCM Actuator Pivot Friction Based on an Operator Modeling Method
,”
IEEE Trans. Control Syst. Technol.
,
18
(
4
), pp.
918
926
.
8.
Freidovich
,
L.
,
Robertsson
,
A.
,
Shiriaev
,
A.
, and
Johansson
,
R.
,
2010
, “
LuGre-Model-Based Friction Compensation
,”
IEEE Trans. Control Syst. Technol.
,
18
(
1
), pp.
194
200
.
9.
Lee
,
T. H.
,
Tan
,
K. K.
, and
Huang
,
S.
,
2011
, “
Adaptive Friction Compensation With a Dynamic Friction Model
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
133
140
.
10.
Marton
,
L.
, and
Lantos
,
B.
,
2011
, “
Control of Robotic Systems With Unknown Friction and Payload
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1534
1539
.
11.
Li
,
Z.
,
Chen
,
J.
,
Zheng
,
G.
, and
Gan
,
M.
,
2013
, “
Adaptive Robust Control of Servo Mechanisms With Compensation for Nonlinearly Parameterized Dynamic Friction
,”
IEEE Trans. Control Syst. Technol.
,
21
(
1
), pp.
194
202
.
12.
Ruderman
,
M.
,
2014
, “
Tracking Control of Motor Drives Using Feedforward Friction Observer
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3727
3735
.
13.
Putra
,
D.
,
Nijmeijer
,
H.
, and
van de Wouw
,
N.
,
2007
, “
Analysis of Undercompensation and Overcompensation of Friction in 1DOF Mechanical Systems
,”
Automatica
,
43
(
8
), pp.
1387
1394
.
14.
Sun
,
M.
,
Wang
,
Z.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2013
, “
On Low-Velocity Compensation of Brushless DC Motor in the Absence of Friction Model
,”
IEEE Trans. Ind. Electron.
,
60
(
9
), pp.
3987
3905
.
15.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.
16.
Gao
,
Z.
,
2003
, “
Scaling and Bandwidth-Parameterization Based Controller Tuning
,”
American Control Conference
(
ACC
), Denver, CO, June 4–6, pp.
4989
4996
.
17.
Zheng
,
Q.
,
Gao
,
L. Q.
, and
Gao
,
Z.
,
2012
, “
On Validation of Extended State Observer Through Analysis and Experimentation
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
2
), p.
024505
.
18.
Huang
,
Y.
, and
Xue
,
W. C.
,
2014
, “
Active Disturbance Rejection Control: Methodology and Theoretical Analysis
,”
ISA Trans.
,
53
(
4
), pp.
963
976
.
19.
Gao
,
Z.
,
2014
, “
On the Centrality of Disturbance Rejection in Automatic Control
,”
ISA Trans.
,
53
(
4
), pp.
850
857
.
20.
Li
,
Y.
,
Sun
,
M.
,
Wang
,
Z.
, and
Chen
,
Z.
,
2016
, “
Quantitative Analysis of Critical Limitation in Using Extended State Observer
,”
Int. J. Control Autom.
,
14
(
3
), pp.
876
882
.
21.
Freidovich
,
L. B.
, and
Khalil
,
H. K.
,
2006
, “
Robust Feedback Linearization Using Extended High-Gain Observers
,”
45th IEEE Conference on Decision and Control
(
CDC
), San Diego, CA, Dec. 13–15, pp.
983
988
.
22.
Dupont
,
P. E.
,
1994
, “
Avoiding Stick-Slip Through PD Control
,”
IEEE Trans. Autom. Control
,
39
(
5
), pp.
1094
1097
.
23.
Armstrong
,
B.
, and
Amin
,
B.
,
1996
, “
PID Control in the Presence of Static Friction: A Comparison of Algebraic and Describing Function Analysis
,”
Automatica
,
32
(
5
), pp.
679
692
.
24.
Walton
,
K.
, and
Marshall
,
J. E.
,
1987
, “
Direct Method for TDS Stability Analysis
,”
IEE Proc. D: Control Theory Appl.
,
134
(
2
), pp.
101
107
.
You do not currently have access to this content.