Bounded-input bounded-output (BIBO) stability of distributed-order linear time-invariant (LTI) systems with uncertain order weight functions and uncertain dynamic matrices is investigated in this paper. The order weight function in these uncertain systems is assumed to be totally unknown lying between two known positive bounds. First, some properties of stability boundaries of fractional distributed-order systems with respect to location of eigenvalues of dynamic matrix are proved. Then, on the basis of these properties, it is shown that the stability boundary of distributed-order systems with the aforementioned uncertain order weight functions is located in a certain region on the complex plane defined by the upper and lower bounds of the order weight function. Thereby, sufficient conditions are obtained to ensure robust stability in distributed-order LTI systems with uncertain order weight functions and uncertain dynamic matrices. Numerical examples are presented to verify the obtained results.

References

References
1.
Cafagna
,
D.
,
2007
, “
Fractional Calculus: A Mathematical Tool From the Past for Present Engineers [Past and Present]
,”
IEEE Ind. Electron. Mag.
,
1
(
2
), pp.
35
40
.
2.
Ma
,
C.
, and
Hori
,
Y.
,
2007
, “
Fractional-Order Control: Theory and Applications in Motion Control [Past and Present]
,”
IEEE Ind. Electron. Mag.
,
1
(
4
), pp.
6
16
.
3.
Tavazoei
,
M. S.
,
2012
, “
From Traditional to Fractional PI Control: A Key for Generalization
,”
IEEE Ind. Electron. Mag.
,
6
(
3
), pp.
41
51
.
4.
Efe
,
M. Ö.
,
2011
, “
Fractional Order Systems in Industrial Automation—A Survey
,”
IEEE Trans. Ind. Inf.
,
7
(
4
), pp.
582
591
.
5.
Gabano
,
J. D.
,
Poinot
,
T.
, and
Kanoun
,
H.
,
2015
, “
LPV Continuous Fractional Modeling Applied to Ultracapacitor Impedance Identification
,”
Control Eng. Pract.
,
45
, pp.
86
97
.
6.
Cho
,
Y.
,
Kim
,
I.
, and
Sheen
,
D.
,
2015
, “
A Fractional-Order Model for MINMOD Millennium
,”
Math. Biosci.
,
262
, pp.
36
45
.
7.
Pinto
,
C. M.
, and
Carvalho
,
A. R.
,
2016
, “
Fractional Complex-Order Model for HIV Infection With Drug Resistance During Therapy
,”
J. Vib. Control
,
22
(
9
), pp.
2222
2239
.
8.
Branciforte
,
M.
,
Meli
,
A.
,
Muscato
,
G.
, and
Porto
,
D.
,
2011
, “
ANN and Non-Integer Order Modeling of ABS Solenoid Valves
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
628
635
.
9.
Zou
,
Z. X.
,
Zhou
,
K.
,
Wang
,
Z.
, and
Cheng
,
M.
,
2015
, “
Frequency-Adaptive Fractional-Order Repetitive Control of Shunt Active Power Filters
,”
IEEE Trans. Ind. Electron.
,
62
(
3
), pp.
1659
1668
.
10.
Badri
,
V.
, and
Tavazoei
,
M. S.
,
2015
, “
Achievable Performance Region for a Fractional-Order Proportional and Derivative Motion Controller
,”
IEEE Trans. Ind. Electron.
,
62
(
11
), pp.
7171
7180
.
11.
Corradini
,
M. L.
,
Giambò
,
R.
, and
Pettinari
,
S.
,
2015
, “
On the Adoption of a Fractional-Order Sliding Surface for the Robust Control of Integer-Order LTI Plants
,”
Automatica
,
51
, pp.
364
371
.
12.
Kochubei
,
A. N.
,
2008
, “
Distributed Order Calculus and Equations of Ultraslow Diffusion
,”
J. Math. Anal. Appl.
,
340
(
1
), pp.
252
281
.
13.
Jiao
,
Z.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2012
,
Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives
(SpringerBriefs in Electrical and Computer Engineering/SpringerBriefs in Control, Automation and Robotics),
Springer
,
London
.
14.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2002
, “
Variable Order and Distributed Order Fractional Operators
,”
Nonlinear Dyn.
,
29
(
1–4
), pp.
57
98
.
15.
Duong
,
P. L. T.
,
Kwok
,
E.
, and
Lee
,
M.
,
2015
, “
Optimal Design of Stochastic Distributed Order Linear SISO Systems Using Hybrid Spectral Method
,”
Math. Probl. Eng.
,
2015
, p.
989542
.
16.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2003
, “
Fractional-Order System Identification Based on Continuous Order-Distributions
,”
Signal Process.
,
83
(
11
), pp.
2287
2300
.
17.
Chechkin
,
A. V.
,
Gorenflo
,
R.
,
Sokolov
,
I. M.
, and
Gonchar
,
V. Y.
,
2003
, “
Distributed Order Time Fractional Diffusion Equation
,”
Fract. Calculus Appl. Anal.
,
6
(
3
), pp.
259
280
.http://www.diogenes.bg/fcaa/volume6/fcaa63/achechkin.pdf
18.
Ye
,
H.
,
Liu
,
F.
, and
Anh
,
V.
,
2015
, “
Compact Difference Scheme for Distributed-Order Time-Fractional Diffusion-Wave Equation on Bounded Domains
,”
J. Comput. Phys.
,
298
, pp.
652
660
.
19.
Chechkin
,
A. V.
,
Gorenflo
,
R.
, and
Sokolov
,
I. M.
,
2002
, “
Retarding Subdiffusion and Accelerating Superdiffusion Governed by Distributed-Order Fractional Diffusion Equations
,”
Phys. Rev. E
,
66
(
4
), p.
046129
.
20.
Mainardi
,
F.
,
Mura
,
A.
,
Pagnini
,
G.
, and
Gorenflo
,
R.
,
2008
, “
Time-Fractional Diffusion of Distributed Order
,”
J. Vib. Control
,
14
(
9–10
), pp.
1267
1290
.
21.
Sandev
,
T.
,
Chechkin
,
A. V.
,
Korabel
,
N.
,
Kantz
,
H.
,
Sokolov
,
I. M.
, and
Metzler
,
R.
,
2015
, “
Distributed-Order Diffusion Equations and Multifractality: Models and Solutions
,”
Phys. Rev. E
,
92
(
4
), p.
042117
.
22.
Atanackovic
,
T. M.
,
Budincevic
,
M.
, and
Pilipovic
,
S.
,
2005
, “
On a Fractional Distributed-Order Oscillator
,”
J. Phys. A
,
38
(
30
), p.
6703
.
23.
Atanackovic
,
T. M.
,
2003
, “
On a Distributed Derivative Model of a Viscoelastic Body
,”
C. R. Mec.
,
331
(
10
), pp.
687
692
.
24.
Lazović
,
G.
,
Vosika
,
Z.
,
Lazarević
,
M.
,
Simić-Krstić
,
J.
, and
Koruga
,
Đ.
,
2014
, “
Modeling of Bioimpedance for Human Skin Based on Fractional Distributed-Order Modified Cole Model
,”
FME Trans.
,
42
(
1
), pp.
74
81
.
25.
Andries
,
E.
,
Umarov
,
S.
, and
Steinberg
,
S.
,
2006
, “
Monte Carlo Random Walk Simulations Based on Distributed Order Differential Equations With Applications to Cell Biology
,”
Fract. Calculus Appl. Anal.
,
9
(
4
), pp.
351
369
.http://www.carc.unm.edu/~andriese/doc/fcaa.pdf
26.
Zhou
,
F.
,
Zhao
,
Y.
,
Li
,
Y.
, and
Chen
,
Y.
,
2013
, “
Design, Implementation and Application of Distributed Order PI Control
,”
ISA Trans.
,
52
(
3
), pp.
429
437
.
27.
Jakovljević
,
B. B.
,
Rapaić
,
M. R.
,
Jelicić
,
Z. D.
, and
Sekara
,
T. B.
,
2014
, “
Optimization of Distributed Order Fractional PID Controller Under Constraints on Robustness and Sensitivity to Measurement Noise
,”
International Conference on Fractional Differentiation and Its Applications
(
ICFDA
), Catania, Italy, June 23–25, pp.
1
6
.
28.
Li
,
Y.
,
Sheng
,
H.
, and
Chen
,
Y. Q.
,
2010
, “
On Distributed Order Lead-Lag Compensator
,”
The Fourth IFAC Workshop
, Badajoz, Spain, Oct. 18–20, pp. 18–20.https://www.yumpu.com/en/document/view/17891328/on-distributed-order-lead-lag-compensator-mechatronics-utah-
29.
Diethelm
,
K.
,
2010
,
The Analysis of Fractional Differential Equations
,
Springer
,
Berlin
.
30.
Caputo
,
M.
,
1969
,
Elasticità e Dissipazione
,
Zanichelli
,
Bologna, Italy
.
31.
Li
,
Z.
,
Luchko
,
Y.
, and
Yamamoto
,
M.
,
2014
, “
Asymptotic Estimates of Solutions to Initial-Boundary-Value Problems for Distributed Order Time-Fractional Diffusion Equations
,”
Fract. Calculus Appl. Anal.
,
17
(
4
), pp.
1114
1136
.
32.
Kochubei
,
A. N.
,
2009
, “
Distributed Order Derivatives and Relaxation Patterns
,”
J. Phys. A
,
42
(
31
), p. 315203.
33.
Zaky
,
M. A.
, and
Machado
,
J. T.
,
2017
, “
On the Formulation and Numerical Simulation of Distributed-Order Fractional Optimal Control Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
52
, pp.
177
189
.
34.
Bulavatsky
,
V. M.
, and
Krivonos
,
Y. G.
,
2013
, “
Mathematical Modeling of the Dynamics of Anomalous Migration Fields Within the Framework of the Model of Distributed Order
,”
Cybern. Syst. Anal.
,
49
(
3
), pp.
390
396
.
35.
Juang
,
Y. T.
, and
Shao
,
C. S.
,
1989
, “
Stability Analysis of Dynamic Interval Systems
,”
Int. J. Control
,
49
(
4
), pp.
1401
1408
.
36.
Najafi
,
H. S.
,
Sheikhani
,
A. R.
, and
Ansari
,
A.
,
2011
, “
Stability Analysis of Distributed Order Fractional Differential Equations
,”
Abstr. Appl. Anal.
,
2011
, p.
175323
.
37.
T.
McClure
,
2013
, “
Numerical Inverse Laplace Transform
,” The MathWorks, Inc., Natick, MA, accessed July 21, 2017, https://www.mathworks.com/matlabcentral/fileexchange/39035-numerical-inverse-laplace-transform?requestedDomain=www.mathworks.com
You do not currently have access to this content.