The vehicle positioning system can be utilized for various automotive applications. Primarily focusing on practicality, this paper presents a new method for vehicle positioning systems using low-cost sensor fusion, which combines global positioning system (GPS) data and data from easily available in-vehicle sensors. As part of the vehicle positioning, a novel nonlinear observer for vehicle velocity and heading angle estimation is designed, and the convergence of estimation error is also investigated using Lyapunov stability analysis. Based on this estimation information, a new adaptive Kalman filter with rule-based logic provides robust and highly accurate estimations of the vehicle position. It adjusts the noise covariance matrices Q and R in order to adapt to various environments, such as different driving maneuvers and ever-changing GPS conditions. The performance of the entire system is verified through experimental results using a commercial vehicle. Finally, through a comparative study, the effectiveness of the proposed algorithm is confirmed.

References

1.
Jo
,
K.
,
Lee
,
M.
, and
Sunwoo
,
M.
,
2016
, “
Road Slope Aided Vehicle Position Estimation System Based on Sensor Fusion of GPS and Automotive Onboard Sensors
,”
IEEE Trans. Intell. Transp. Syst.
,
17
(
1
), pp.
250
263
.
2.
Jo
,
K.
,
Chu
,
K.
, and
Sunwoo
,
M.
,
2012
, “
Interacting Multiple Model Filter-Based Sensor Fusion of GPS With In-Vehicle Sensors for Real-Time Vehicle Positioning
,”
IEEE Trans. Intell. Transp. Syst.
,
13
(
1
), pp.
329
343
.
3.
Bevly
,
D. M.
,
2004
, “
Global Positioning System (GPS): A Low-Cost Velocity Sensor for Correcting Inertial Sensor Errors on Ground Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
2
), pp.
255
264
.
4.
Li
,
X.
,
Chen
,
W.
, and
Chan
,
C.
,
2014
, “
A Reliable Multisensory Fusion Strategy for Land Vehicle Positioning Using Low Cost Sensors
,”
Proc. Inst. Mech. Eng., Part D
,
228
(
12
), pp.
1375
1397
.
5.
Wu
,
Z.
,
Yao
,
M.
,
Ma
,
H.
, and
Jia
,
W.
,
2013
, “
Improving Accuracy of the Vehicle Attitude Estimation for Low-Cost INS/GPS Integration Aided by the GPS-Measured Course Angle
,”
IEEE Trans. Intell. Transp. Syst.
,
14
(
2
), pp.
553
564
.
6.
Yang
,
Y.
,
Gu
,
Z.
, and
Hu
,
L.
,
2007
, “
Research on the Information Fusion Method of the Global Positioning System-Dead Reckoning Vehicle Integrated Navigation System
,”
Proc. Inst. Mech. Eng., Part D
,
221
(
5
), pp.
543
553
.
7.
Fiengo
,
G.
,
Domenico
,
D. D.
, and
Glielmo
,
L.
,
2009
, “
A Hybrid Procedure Strategy for Vehicle Localization System: Design and Prototyping
,”
Control Eng. Pract.
,
17
(
1
), pp.
14
25
.
8.
Bonnabel
,
S.
, and
Salaun
,
E.
,
2011
, “
Design and Prototyping of a Low-Cost Vehicle Localization System With Guaranteed Convergence Properties
,”
Control Eng. Pract.
,
19
(
6
), pp.
591
601
.
9.
Mehra
,
R.
,
1970
, “
On the Identification of Variances and Adaptive Kalman Filtering
,”
IEEE Trans. Autom. Control
,
15
(
2
), pp.
175
184
.
10.
Oh
,
J. J.
, and
Choi
,
S. B.
,
2012
, “
Vehicle Velocity Observer Design Using 6-D IMU and Multiple-Observer Approach
,”
IEEE Trans. Intell. Transp. Syst.
,
13
(
4
), pp.
1865
1879
.
11.
Oh
,
J. J.
, and
Choi
,
S. B.
,
2013
, “
Dynamic Sensor Zeroing Algorithm of 6D IMU Mounted on Ground Vehicles
,”
Int. J. Automot. Technol.
,
14
(
2
), pp.
221
231
.
12.
Oh
,
J. J.
, and
Choi
,
S. B.
,
2013
, “
Vehicle Roll and Pitch Angle Estimation Using a Cost-Effective Six-Dimensional Inertial Measurement Unit
,”
Proc. Inst. Mech. Eng., Part D
,
227
(
4
), pp.
577
590
.
13.
Meguro
,
J.
,
Kojima
,
Y.
,
Suzuki
,
N.
, and
Teramoto
,
E.
,
2012
, “
Positioning Technique Based on Vehicle Trajectory Using GPS Raw Data and Low-Cost IMU
,”
Int. J. Automot. Eng.
,
3
(
2
), pp.
75
80
.
14.
Yoon
,
J. H.
,
Li
,
S. E.
, and
Ahn
,
C.
,
2016
, “
Estimation of Vehicle Sideslip Angle and Tire-Road Friction Coefficient Based on Magnetometer With GPS
,”
Int. J. Automot. Technol.
,
17
(
3
), pp.
427
435
.
15.
Langley
,
R. B.
,
1999
,
Dilution of Precision
,
GPS World
, Fredericton, NB, Canada.
16.
Leung
,
K. T.
,
Whidborne
,
J. F.
,
Purdy
,
D.
, and
Barber
,
P.
,
2011
, “
Road Vehicle Sate Estimation Using Low-Cost GPS/INS
,”
Mech. Syst. Signal Process.
,
25
(
6
), pp.
1988
2004
.
17.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Naeini
,
A. E.
,
2005
,
Feedback Control of Dynamic Systems
, 6th ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
18.
Hermann
,
R.
, and
Krener
,
A. J.
,
1977
, “
Nonlinear Controllability and Observability
,”
IEEE Trans. Autom. Control
,
22
(
5
), pp.
728
740
.
19.
Stephant
,
J.
,
Charara
,
A.
, and
Meizel
,
D.
,
2007
, “
Evaluation of a Sliding Mode Observer for Vehicle Sideslip Angle
,”
Control Eng. Pract.
,
15
(
7
), pp.
803
812
.
20.
Travers
,
M.
, and
Choset
,
H.
,
2015
, “
Use of the Nonlinear Observability Rank Condition for Improved Parametric Estimation
,” IEEE International Conference on Robotics and Automation (
ICRA
), Seattle, WA, May 26–30, pp. 1029–1035.
21.
Simon
,
D.
,
2006
,
Optimal State Estimation
,
Wiley
,
New York
.
22.
Khalil
,
H.
,
2002
,
Nonlinear System
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
23.
Almagbile
,
A.
,
Wang
,
J.
, and
Ding
,
W.
,
2010
, “
Evaluating the Performances of Adaptive Kalman Filter Methods in GPS/INS Integration
,”
J. Global Positioning Syst.
,
9
(
1
), pp.
33
40
.
24.
Ding
,
W.
,
Wang
,
J.
, and
Rizos
,
C.
,
2007
, “
Improving Adaptive Kalman Estimation in GPS/INS Integration
,”
J. Navig.
,
60
(
3
), pp.
517
529
.
25.
Mohamed
,
A. H.
, and
Schwarz
,
K. P.
,
1999
, “
Adaptive Kalman Filtering for INS/GPS
,”
J. Geod.
,
73
(
4
), pp.
193
203
.
26.
Yoon
,
J.
, and
Peng
,
H.
,
2014
, “
A Cost-Effective Sideslip Estimation Method Using Velocity Measurements From Two GPS Receivers
,”
IEEE Trans. Veh. Technol.
,
63
(
6
), pp.
2589
2599
.
27.
Han
,
K.
,
Hwang
,
Y.
,
Lee
,
E.
, and
Choi
,
S. B.
,
2016
, “
Robust Estimation of Maximum Tire-Road Friction Coefficient Considering Road Surface Irregularity
,”
Int. J. Automot. Technol.
,
17
(
3
), pp.
415
425
.
You do not currently have access to this content.