In this note, the analysis of time delay systems (TDSs) using Lambert W function approach is reassessed. A common canonical (CC) form of time delay systems is defined. We extended the recent results of Cepeda–Gomez and Michiels (2015, “Some Special Cases in the Stability Analysis of Multi-Dimensional Time-Delay Systems Using the Matrix Lambert W Function,” Automatica, 53, pp. 339–345) for second-order into nth order system. The eigenvalues of a time delay system are either real or complex conjugate pairs and therefore, the whole eigenspectrum can be associated with only two real branches of the Lambert W function. A new class of time delay systems is characterized to extend the applicability of the above-said method. Moreover, this approach has been exploited to design a controller which places a subset of eigenvalues at desired locations. Stability is guaranteed by using a new algorithm developed in this paper, which is based on the Nyquist plot. The approach is validated through numerical examples.

References

References
1.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2010
,
Time-Delay Systems: Analysis and Control Using the Lambert W Function
,
World Scientific
,
Singapore
.
2.
Asl
,
F. M.
, and
Ulsoy
,
A. G.
,
2003
, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst. Meas. Control
,
125
(
2
), pp.
215
223
.
3.
Shinozaki
,
H.
, and
Mori
,
T.
,
2006
, “
Robust Stability Analysis of Linear Time-Delay Systems by Lambert W Function: Some Extreme Point Results
,”
Automatica
,
42
(
10
), pp.
1791
1799
.
4.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2007
, “
Survey on Analysis of Time Delayed Systems Via the Lambert W Function
,”
DCDIS Suppl., Adv. Dyn. Syst.
,
14
(
S2
), pp.
296
301
.https://pdfs.semanticscholar.org/d7dd/70bb88f5447dd5847144765ac1192c90a831.pdf
5.
Yi
,
S.
, and
Ulsoy
,
A. G.
,
2006
, “
Solution of a System of Linear Delay Differential Equations Using the Matrix Lambert Function
,”
American Control Conference
(
ACC
), Minneapolis, MN, June 14–16, pp.
2433
2438
.
6.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2010
, “
Eigenvalue Assignment Via the Lambert W Function for Control of Time-Delay Systems
,”
J. Vib. Control
,
16
(
78
), pp.
961
982
.
7.
Yi
,
S.
,
Ulsoy
,
A. G.
, and
Nelson
,
P. W.
,
2010
, “
Design of Observer-Based Feedback Control for Time-Delay Systems With Application to Automotive Powertrain Control
,”
J. Franklin Inst.
,
347
(
1
), pp.
358
376
.
8.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
,
2007
, “
Delay Differential Equations Via the Matrix Lambert W Function and Bifurcation Analysis: Application to Machine Tool Chatter
,”
Math. Biosci. Eng.
,
4
(
2
), pp.
355
368
.
9.
Yi
,
S.
,
Choi
,
W.
, and
Abu-Lebdeh
,
T.
,
2012
, “
Time-Delay Estimation Using the Characteristic Roots of Delay Differential Equations
,”
Am. J. Appl. Sci.
,
9
(
6
), pp.
955
960
.
10.
Jarlebring
,
E.
, and
Damm
,
T.
,
2007
, “
The Lambert W Function and the Spectrum of Some Multidimensional Time-Delay Systems
,”
Automatica
,
43
(
12
), pp.
2124
2128
.
11.
Cepeda-Gomez
,
R.
, and
Michiels
,
W.
,
2015
, “
Some Special Cases in the Stability Analysis of Multi-Dimensional Time-Delay Systems Using the Matrix Lambert W Function
,”
Automatica
,
53
, pp.
339
345
.
12.
Cepeda-Gomez
,
R.
, and
Michiels
,
W.
,
2015
, “
Special Cases in Using the Matrix Lambert W Function for the Stability Analysis of High-Order Linear Systems With Time Delay
,”
12th IFAC Workshop on Time Delay Systems
, Ann Arbor, MI, June 28–30, pp.
7
12
.
13.
Brooks
,
B. P.
,
2006
, “
The Coefficients of the Characteristic Polynomial in Terms of the Eigenvalues and the Elements of an Matrix
,”
Appl. Math. Lett.
,
19
(
6
), pp.
511
515
.
14.
Corless
,
R. M.
,
Gonnet
,
G. H.
,
Hare
,
D. E. G.
,
Jeffrey
,
D. J.
, and
Knuth
,
D. E.
,
1996
, “
On the Lambert W Function
,”
Adv. Comput. Math.
,
5
(
4
), pp.
329
359
.
15.
Wang
,
Z. H.
, and
Hu
,
H. Y.
,
2008
, “
Calculation of the Rightmost Characteristic Root of Retarded Type Time Delay Systems Via Lambert W Function
,”
J. Sound Vib.
,
318
(
4–5
), pp.
757
767
.
16.
Vyhlidal
,
T.
, and
Zitek
,
P.
,
2009
, “
Mapping Based Algorithm for Large Scale Computation of Quasi-Polynomial Zeros
,”
IEEE Trans. Autom. Control
,
54
(
1
), pp.
171
177
.
17.
Mukhija
,
P.
,
Kar
,
I. N.
, and
Bhatt
,
R. K. P.
,
2014
, “
Robust Absolute Stability Criteria for Uncertain Lurie System With Interval Time-Varying Delay
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041020
.
18.
Xu
,
Y.
,
Lu
,
R.
,
Peng
,
H.
,
Xie
,
K.
, and
Xue
,
A.
,
2017
, “
Asynchronous Dissipative State Estimation for Stochastic Complex Networks With Quantized Jumping Coupling and Uncertain Measurements
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
2
), pp.
268
277
.
19.
Wu
,
Z. G.
,
Shi
,
P.
,
Su
,
H.
, and
Chu
,
J.
,
2011
, “
Passivity Analysis for Discrete-Time Stochastic Markovian Jump Neural Networks With Mixed Time Delays
,”
IEEE Trans. Neural Networks
,
22
(
10
), pp.
1566
1575
.
20.
Wu
,
Z. G.
,
Shi
,
P.
,
Su
,
H.
, and
Chu
,
J.
,
2012
, “
Exponential Synchronization of Neural Networks With Discrete and Distributed Delays Under Time-Varying Sampling
,”
IEEE Trans. Neural Networks Learn. Syst.
,
23
(
9
), pp.
1368
1376
.
21.
Duan
,
S.
,
Ni
,
J.
, and
Ulsoy
,
A. G.
,
2012
, “
Decay Function Estimation for Linear Time Delay Systems Via the Lambert W Function
,”
J. Vib. Control
,
18
(
10
), pp.
1462
1473
.
This content is only available via PDF.
You do not currently have access to this content.