Accounting for the autopilot as second-order dynamics, an observer-based guidance law with terminal impact angle constraint is designed using the dynamic surface control method. Some first-order low-pass filters are introduced into the designing process to avoid the occurrence of high-order derivatives of the line of sight (LOS) angle in the expression of the guidance law such that the guidance law can be implemented in practical applications. The proposed guidance law is effective in compensating for the second-order autopilot lag. In simulation of intercepting targets with sinusoidal acceleration, the guidance law is compared with the biased proportional navigation guidance (BPNG) law in the presence of missile autopilot lag. Simulation results show that the proposed observer-based guidance law with terminal impact angle constraint is able to guide a missile with large autopilot lag to impact a target with a desired angle and achieve a small miss distance, even if the target escapes in a great and fast maneuver.

References

References
1.
Ratnoo
,
A.
, and
Ghose
,
D.
,
2008
, “
Impact Angle Constrained Interception of Stationary Targets
,”
J. Guid. Control Dyn.
,
31
(
6
), pp.
1817
1822
.
2.
Song
,
T. L.
, and
Shin
,
S. J.
,
1999
, “
Time-Optimal Impact Angle Control for Vertical Plane Engagements
,”
IEEE Trans. Aerosp. Electron. Syst.
,
35
(
2
), pp.
738
742
.
3.
Ryoo
,
C. K.
,
Cho
,
H.
, and
Tahk
,
M. J.
,
2006
, “
Time-to-Go Weighted Optimal Guidance With Impact Angle Constraints
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp.
483
492
.
4.
Jeon
,
I. S.
,
Lee
,
J. I.
, and
Tahk
,
M. J.
,
2006
, “
Impact-Time-Control Guidance Law for Anti-Ship Missiles
,”
IEEE Trans. Control Syst. Technol.
,
14
(
2
), pp.
260
266
.
5.
Lee
,
J. I.
,
Jeon
,
I. S.
, and
Tahk
,
M. J.
,
2007
, “
Guidance Law to Control Impact Time and Angle
,”
IEEE Trans. Aerosp. Electron. Syst.
,
43
(
1
), pp.
301
310
.
6.
Manchester
,
I. R.
, and
Savkin
,
A. V.
,
2004
, “
Circular Navigation Missile Guidance With Incomplete Information and Uncertain Autopilot Model
,”
J. Guid. Control Dyn.
,
27
(
6
), pp.
1078
1083
.
7.
Manchester
,
I. R.
, and
Savkin
,
A. V.
,
2006
, “
Circular-Navigation-Guidance Law for Precision Missile/Target Engagements
,”
J. Guid. Control Dyn.
,
29
(
2
), pp.
314
320
.
8.
Kim
,
B. S.
,
Lee
,
J. G.
, and
Han
,
H. S.
,
1998
, “
Biased PNC Law for Impact With Angular Constraint
,”
IEEE Trans. Aerosp. Electron. Syst.
,
34
(
1
), pp.
277
288
.
9.
Idan
,
M.
,
Golan
,
O. M.
, and
Guelman
,
M.
,
1995
, “
Optimal Planar Interception With Terminal Constraint
,”
J. Guid. Control Dyn.
,
18
(
6
), pp.
1273
1279
.
10.
Song
,
T. L.
,
Shin
,
S. J.
, and
Cho
,
H.
,
1999
, “
Impact Angle Control for Planar Engagements
,”
IEEE Trans. Aerosp. Electron. Syst.
,
35
(
4
), pp.
1439
1444
.
11.
He
,
S. M.
,
Wang
,
W.
, and
Wang
,
J.
,
2016
, “
Three-Dimensional Impact Angle Guidance Laws Based on Model Predictive Control and Sliding Mode Disturbance Observer
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
8
), p.
081006
.
12.
Yan
,
H.
, and
Ji
,
H. B.
,
2012
, “
Guidance Laws Based on Input-to-State Stability and High-Gain Observers
,”
IEEE Trans. Aerosp. Electron. Syst.
,
48
(
3
), pp.
2518
2529
.
13.
Rusnak
,
I.
, and
Meirt
,
L.
,
1990
, “
Modern Guidance Law for High-Order Autopilot
,”
J. Guid. Control Dyn.
,
14
(
5
), pp.
1056
1058
.
14.
Yoo
,
S. J.
,
Park
,
J. B.
, and
Choi
,
Y. H.
,
2006
, “
Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks
,”
IEEE Trans. Syst. Man Cybern. B Cybern.
,
36
(
6
), pp.
1342
1355
.
15.
Xiong
,
G. L.
,
Xie
,
Z. W.
,
Huang
,
J. B.
,
Liu
,
H.
,
Jiang
,
Z. N.
, and
Sun
,
K.
,
2010
, “
Dynamic Surface Control- Backstepping Based Impedance Control for 5-DOF Flexible Joint Robots
,”
J. Cent. South Univ. Technol.
,
17
(
4
), pp.
807
815
.
16.
Hou
,
M. Z.
, and
Duan
,
G. R.
,
2011
, “
Adaptive Dynamic Surface Control for Integrated Missile Guidance and Autopilot
,”
Int. J. Autom. Comput.
,
8
(
1
), pp.
122
127
.
17.
Swaroop
,
D.
,
Hedrick
,
J. K.
,
Yip
,
P. P.
, and
Gerdes
,
J. C.
,
2000
, “
Dynamic Surface Control for a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
45
(
10
), pp.
1893
1899
.
18.
Swaroop
,
D.
,
Gerdes
,
J. C.
,
Yip
,
P. P.
, and
Hedrick
,
J. K.
,
1997
, “
Dynamic Surface Control of Nonlinear Systems
,”
American Control Conference
(
ACC
), Albuquerque, NM, June 4–6, pp.
3028
3034
.
19.
Xu
,
B.
,
Huang
,
X. Y.
,
Wang
,
D. W.
, and
Sun, F.
,
2014
, “
Dynamic Surface Control of Constrained Hypersonic Flight Models With Parameter Estimation and Actuator Compensation
,”
Asian J. Control
,
16
(
1
), pp.
162
174
.
20.
Li
,
Y. M.
,
Tong
,
S. C.
, and
Li
,
T. S.
,
2015
, “
Adaptive Fuzzy Output Feedback Dynamic Surface Control of Interconnected Nonlinear Pure-Feedback Systems
,”
IEEE Trans. Cybern.
,
45
(
1
), pp.
138
149
.
21.
Zhou
,
D.
,
Qu
,
P. P.
, and
Sun
,
S.
,
2013
, “
A Guidance Law With Terminal Impact Angle Constraint Accounting for Missile Autopilot
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
5
), p.
051009
.
22.
Chwa
,
D. Y.
,
Choi
,
J. Y.
, and
Anavatti
,
S. G.
,
2006
, “
Observer-Based Adaptive Guidance Law Considering Target Uncertainties and Control Loop Dynamics
,”
IEEE Trans. Control Syst. Technol.
,
14
(
1
), pp.
112
123
.
23.
Duan
,
G. R.
,
2004
,
Linear System Theory
,
Harbin Institute of Technology Press
,
Harbin, China
, pp.
292
297
.
You do not currently have access to this content.