This paper proposes sliding mode control of vibration in three types of single-degree-of-freedom (SDOF) fractional oscillators: the Kelvin–Voigt type, the modified Kelvin–Voigt type, and the Duffing type. The dynamical behaviors are all described by second-order differential equations involving fractional derivatives. By introducing state variables of physical significance, the differential equations of motion are transformed into noncommensurate fractional-order state equations. Fractional sliding mode surfaces are constructed and the stability of the sliding mode dynamics is proved by means of the diffusive representation and Lyapunov stability theory. Then, sliding mode control laws are designed for fractional oscillators, respectively, in cases where the bound of the external exciting force is known or unknown. Furthermore, sliding mode control laws for nonzero initialization case are designed. Finally, numerical simulations are carried out to validate the above control designs.

References

References
1.
Park
,
S.
,
2001
, “
Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control
,”
Int. J. Solids Struct.
,
38
(
44
), pp.
8065
8092
.
2.
Lima
,
A. M. G. D.
,
Bouhaddi
,
N.
,
Rade
,
D. A.
, and
Belonsi
,
M.
,
2015
, “
A Time-Domain Finite Element Model Reduction Method for Viscoelastic Linear and Nonlinear Systems
,”
Lat. Am. J. Solids Struct.
,
12
(
6
), pp.
1182
1201
.
3.
Bagley
,
R. L.
,
1979
, “
Applications of Generalized Derivatives to Viscoelasticity
,” Ph.D. thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH.
4.
Bagley
,
R. L.
, and
Torvik
,
J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
(
5
), pp.
741
748
.
5.
Bagley
,
R. L.
, and
Torvik
,
P.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol. (1978-Present)
,
27
(
3
), pp.
201
210
.
6.
Xu
,
Z. D.
,
Xu
,
C.
, and
Hu
,
J.
,
2015
, “
Equivalent Fractional Kelvin Model and Experimental Study on Viscoelastic Damper
,”
J. Vib. Control
,
21
(13), pp. 2536–2552.
7.
Moreau
,
X.
,
Ramus-Serment
,
C.
, and
Oustaloup
,
A.
,
2002
, “
Fractional Differentiation in Passive Vibration Control
,”
Nonlinear Dyn.
,
29
(
1–4
), pp.
343
362
.
8.
Pritz
,
T.
,
2003
, “
Five-Parameter Fractional Derivative Model for Polymeric Damping Materials
,”
J. Sound Vib.
,
265
(
5
), pp.
935
952
.
9.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.
10.
Barone
,
G.
,
Di Paola
,
M.
,
Iacono
,
F. L.
, and
Navarra
,
G.
,
2015
, “
Viscoelastic Bearings With Fractional Constitutive Law for Fractional Tuned Mass Dampers
,”
J. Sound Vib.
,
344
, pp.
18
27
.
11.
Rüdinger
,
F.
,
2006
, “
Tuned Mass Damper With Fractional Derivative Damping
,”
Eng. Struct.
,
28
(
13
), pp.
1774
1779
.
12.
Lewandowski
,
R.
, and
Pawlak
,
Z.
,
2011
, “
Dynamic Analysis of Frames With Viscoelastic Dampers Modelled by Rheological Models With Fractional Derivatives
,”
J. Sound Vib.
,
330
(
5
), pp.
923
936
.
13.
Deng
,
R.
,
Davies
,
P.
, and
Bajaj
,
A.
,
2006
, “
A Nonlinear Fractional Derivative Model for Large Uni-Axial Deformation Behavior of Polyurethane Foam
,”
Signal Process.
,
86
(
10
), pp.
2728
2743
.
14.
Padovan
,
J.
,
Chung
,
S.
, and
Guo
,
Y. H.
,
1987
, “
Asymptotic Steady State Behavior of Fractionally Damped Systems
,”
J. Franklin Inst.
,
324
(
3
), pp.
491
511
.
15.
Padovan
,
J.
, and
Guo
,
Y.
,
1988
, “
General Response of Viscoelastic Systems Modelled by Fractional Operators
,”
J. Franklin Inst.
,
325
(
2
), pp.
247
275
.
16.
Beyer
,
H.
, and
Kempfle
,
S.
,
1995
, “
Definition of Physically Consistent Damping Laws With Fractional Derivatives
,”
ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
75
(
8
), pp.
623
635
.
17.
Kempfle
,
S.
,
Schäfer
,
I.
, and
Beyer
,
H.
,
2002
, “
Fractional Calculus Via Functional Calculus: Theory and Applications
,”
Nonlinear Dyn.
,
29
(
1–4
), pp.
99
127
.
18.
Schäfer
,
I.
, and
Kempfle
,
S.
,
2004
, “
Impulse Responses of Fractional Damped Systems
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
61
68
.
19.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2001
, “
Analysis of Rheological Equations Involving More Than One Fractional Parameters by the Use of the Simplest Mechanical Systems Based on These Equations
,”
Mech. Time-Depend. Mater.
,
5
(
2
), pp.
131
175
.
20.
Fukunaga
,
M.
,
2002
, “
On Initial Value Problems of Fractional Differential Equations
,”
Int. J. Appl. Math.
,
9
(
2
), pp.
219
236
.
21.
Fukunaga
,
M.
,
2002
, “
On Uniqueness of the Solutions of Initial Value Problems of Ordinary Fractional Differential Equations
,”
Int. J. Appl. Math.
,
10
(
2
), pp.
177
190
.
22.
Fukunaga
,
M.
,
2003
, “
A Difference Method for Initial Value Problems for Ordinary Fractional Differential Equations, II
,”
Int. J. Appl. Math.
,
11
(
3
), pp.
215
244
.
23.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2002
, “
Control of Initialized Fractional-Order Systems
,” NASA Glenn Research Center, Brook Park, OH, NASA Technical Report No.
NASA/TM-2002-211377
.
24.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2008
, “
Initialization of Fractional-Order Operators and Fractional Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021101
.
25.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Academic Press
, San Diego, CA.
26.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ-Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
27.
Wei
,
Y. H.
,
Tse
,
P. W.
,
Yao
,
Z.
, and
Wang
,
Y.
,
2016
, “
Adaptive Backstepping Output Feedback Control for a Class of Nonlinear Fractional Order Systems
,”
Nonlinear Dyn.
,
86
(
2
), pp.
1047
1056
.
28.
Wei
,
Y. H.
,
Chen
,
Y. Q.
,
Liang
,
S.
, and
Wang
,
Y.
,
2015
, “
A Novel Algorithm on Adaptive Backstepping Control of Fractional Order Systems
,”
Neurocomputing
,
165
, pp.
395
402
.
29.
Yuan
,
J.
,
Shi
,
B.
, and
Ji
,
W. Q.
,
2013
, “
Adaptive Sliding Mode Control of a Novel Class of Fractional Chaotic Systems
,”
Adv. Math. Phys.
, 2013, p.576709.
30.
Shi
,
B.
,
Yuan
,
J.
, and
Dong
,
C.
,
2014
, “
On Fractional Model Reference Adaptive Control
,”
Sci. World J.
,
2014
, p.
521625
.
31.
Wei
,
Y. H.
,
Sun
,
Z. Y.
,
Hu
,
Y. S.
, and
Wang
,
Y.
,
2016
, “
On Fractional Order Composite Model Reference Adaptive Control
,”
Int. J. Syst. Sci.
,
47
(
11
), pp.
2521
2531
.
32.
Agrawal
,
O. P.
,
2004
, “
A General Formulation and Solution Scheme for Fractional Optimal Control Problems
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
323
337
.
33.
Agrawal
,
O. P.
,
2008
, “
A Formulation and Numerical Scheme for Fractional Optimal Control
,”
J. Vib. Control
,
14
(
9–10
), pp.
1291
1299
.
34.
Bagley
,
R. L.
, and
Calico
,
R. A.
,
1991
, “
Fractional Order State Equations for the Control of Viscoelastically Damped Structures
,”
J. Guid. Control Dyn.
,
14
(
2
), pp.
304
311
.
35.
Fenander
,
A.
,
1996
, “
Modal Synthesis When Modeling Damping by Use of Fractional Derivatives
,”
AIAA J.
,
34
(
5
), pp.
1051
1058
.
36.
Montseny
,
G.
,
1998
, “
Diffusive Representation of Pseudo-Differential Time-Operators
,”
ESAIM: Proc.
,
5
, pp.
159
175
.
37.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
Transients of Fractional-Order Integrator and Derivatives
,”
Signal Image Video Process.
,
6
(
3
), pp.
359
372
.
38.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3117
3140
.
39.
Wu
,
C. X.
,
Yuan
,
J.
, and
Shi
,
B.
,
2016
, “
Stability of Initialization Response of Fractional Oscillators
,”
J. Vibroengineering
,
18
(
6
), pp.
4148
4154
.
40.
Yuan
,
J.
,
Zhang
,
Y. A.
,
Liu
,
J. M.
,
Shi
,
B.
,
Gai
,
M.
, and
Yang
,
S.
,
2017
, “
Mechanical Energy and Equivalent Differential Equations of Motion for Single Degree-of-Freedom Fractional Oscillators
,”
J. Sound Vib.
,
397
, pp.
192
203
.
You do not currently have access to this content.