A general design approach is presented for model-based control of piston position in a free-piston engine (FPE). The proposed approach controls either “bottom-dead-center” (BDC) or “top-dead-center” (TDC) position. The key advantage of the approach is that it facilitates controller parameter selection, by the way of deriving parameter combinations that yield both stable BDC and stable TDC. Driving the piston motion toward a target compression ratio is, therefore, achieved with sound engineering insight, consequently allowing repeatable engine cycles for steady power output. The adopted control design approach is based on linear control-oriented models derived from exploitation of energy conservation principles in a two-stroke engine cycle. Two controllers are developed: A proportional integral (PI) controller with an associated stability condition expressed in terms of controller parameters, and a linear quadratic regulator (LQR) to demonstrate a framework for advanced control design where needed. A detailed analysis is undertaken on two FPE case studies differing only by rebound device type, reporting simulation results for both PI and LQR control. The applicability of the proposed methodology to other common FPE configurations is examined to demonstrate its generality.

References

References
1.
Hanipah
,
M. R.
,
Mikalsen
,
R.
, and
Roskilly
,
A.
,
2015
, “
Recent Commercial Free Piston Engine Developments for Automotive Applications
,”
Appl. Therm. Eng.
,
75
, pp.
493
503
.
2.
Li
,
K.
,
Sadighi
,
A.
, and
Sun
,
Z.
,
2014
, “
Active Motion Control of a Hydraulic Free Piston Engine
,”
IEEE/ASME Trans. Mechatronics
,
19
(
4
), pp.
1148
1159
.
3.
Li
,
K.
,
Zhang
,
C.
, and
Sun
,
Z.
,
2015
, “
Precise Piston Trajectory Control for a Free Piston Engine
,”
Control Eng. Pract.
,
34
, pp.
30
38
.
4.
Kosaka
,
H.
,
Akita
,
T.
,
Moriya
,
K.
,
Goto
,
S.
,
Hotta
,
Y.
,
Umeno
,
T.
, and
Nakakita
,
K.
,
2014
, “
Development of Free Piston Engine Linear Generator System—Part 1: Investigation of Fundamental Characteristics
,”
SAE
Paper No. 2014-01-1203.
5.
Goto
,
S.
,
Moriya
,
K.
,
Kosaka
,
H.
,
Akita
,
T.
,
Hotta
,
Y.
,
Umeno
,
T.
, and
Nakakita
,
K.
,
2014
, “
Development of Free Piston Engine Linear Generator System: Part 2—Investigation of Control System for Generator
,”
SAE
Paper No. 2014-01-1193.
6.
Achten
,
P. A. J.
,
Van den Oever
,
J. P. J.
,
Potma
,
J.
, and
Vael
,
G.
,
2000
, “
Horsepower With Brains: The Design of the Chiron Free Piston Engine
,”
SAE
Paper No. 2000-01-2545.
7.
Hbi
,
A.
, and
Ito
,
T.
,
2004
, “
Fundamental Test Results of a Hydraulic Free Piston Internal Combustion Engine
,”
Proc. Inst. Mech. Eng.
,
218
(
10
), pp.
1149
1157
.
8.
Mikalsen
,
R.
, and
Roskilly
,
A.
,
2007
, “
A Review of Free-Piston Engine History and Applications
,”
Appl. Therm. Eng.
,
27
(14–15), pp.
2339
2352
.
9.
Toth-Nagy
,
C.
, and
Clark
,
N. N.
,
2005
, “
The Linear Engine in 2004
,”
SAE
Paper No. 2005-01-2140.
10.
Achten
,
P. A. J.
,
1994
, “
A Review of Free Piston Engine Concepts
,”
SAE
Paper No. 941776.
11.
Tikkanen
,
S.
, and
Vilenius
,
M.
,
1999
, “
Hydraulic Free Piston Engine—Challenge for Control
,”
European Control Conference
(
ECC
), Karlsruhe, Germany, Aug. 31–Sept. 3, pp.
2943
2948
.http://ieeexplore.ieee.org/document/7099776/
12.
Johansen
,
T. A.
,
Egeland
,
O.
,
Johannessen
,
E. A.
, and
Kvamsdal
,
R.
,
2001
, “
Free-Piston Diesel Engine Dynamics and Control
,”
American Control Conference
(
ACC
), Arlington, VA, June 25–27, pp.
4579
4584
.
13.
Johansen
,
T. A.
,
Egeland
,
O.
,
Johannessen
,
E. A.
, and
Kvamsdal
,
R.
,
2002
, “
Free-Piston Diesel Engine Timing and Control—Toward Electronic Cam- and Crankshaft
,”
IEEE Trans. Control Syst. Technol.
,
10
(
2
), pp.
177
190
.
14.
Mikalsen
,
R.
, and
Roskilly
,
A. P.
,
2008
, “
The Design and Simulation of a Two-Stroke Free-Piston Compression Ignition Engine for Electrical Power Generation
,”
Appl. Therm. Eng.
,
28
(5–6), pp.
589
600
.
15.
Mikalsen
,
R.
, and
Roskilly
,
A.
,
2008
, “
Performance Simulation of a Spark Ignited Free-Piston Engine Generator
,”
Appl. Therm. Eng.
,
28
(14–15), pp.
1726
1733
.
16.
Mikalsen
,
R.
, and
Roskilly
,
A. P.
,
2010
, “
The Control of a Free-Piston Engine Generator—Part 1: Fundamental Analyses
,”
Appl. Energy
,
87
(4), pp.
1273
1280
.
17.
Mikalsen
,
R.
, and
Roskilly
,
A. P.
,
2010
, “
The Control of a Free-Piston Engine Generator—Part 2: Engine Dynamics and Piston Motion Control
,”
Appl. Energy
,
87
(
4
), pp.
1281
1287
.
18.
Jia
,
B.
,
Mikalsen
,
R.
,
Smallbone
,
A.
,
Zuo
,
Z.
, and
Feng
,
H.
,
2016
, “
Piston Motion Control of a Free-Piston Engine Generator: A New Approach
,”
Appl. Energy
,
179
, pp.
1166
1175
.
19.
Gong
,
X.
,
Zaseck
,
K.
,
Kolmanovsky
,
I.
, and
Chen
,
H.
,
2015
, “
Modeling and Predictive Control of Free Piston Engine Generator
,”
American Control Conference
(
ACC
), Chicago, IL, July 1–3, pp.
4735
4740
.
20.
Eriksson
,
L.
, and
Nielsen
,
L.
,
2014
,
Modeling and Control of Engines and Drivelines
,
Wiley
, Chichester, UK.
21.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
22.
Hohenberg
,
G.
,
1979
, “
Advanced Approaches for Heat Transfer Calculations
,”
SAE
Paper No. 790825.
23.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
,
1989
,
Optimal Control, Linear Quadratic Methods
,
Prentice Hall
,
Englewood Cliffs, NJ
.
24.
Dunne
,
J. F.
,
2010
, “
Dynamic Modelling and Control of Semifree-Piston Motion in a Rotary Diesel Generator Concept
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
5
), p.
051003
.
25.
Gopalakrishnan
,
V.
,
Najt
,
P. M. P.
, and
Durrett
,
R. P.
,
2014
, “
Free Piston Linear Alternator Utilizing Opposed Pistons With Spring Return
,” GM Global Technology Operations LLC, Detroit, MI, U.S. Patent No.
US8714117 B2
.https://www.google.ch/patents/US8714117
26.
Jia
,
B.
,
Zuo
,
Z.
,
Tian
,
G.
,
Feng
,
H.
, and
Roskilly
,
A. P.
,
2015
, “
Development and Validation of a Free-Piston Engine Generator Numeric Model
,”
Energy Convers. Manage.
,
91
, pp.
333
341
.
27.
Van Blarigan
,
P.
,
Paradiso
,
N.
, and
Goldsborough
,
S.
,
1998
, “
Homogeneous Charge Compression Ignition With a Free Piston: A New Approach to Ideal Otto Cycle Performance
,”
SAE
Paper No. 982484.
You do not currently have access to this content.