Tractor–trailer vehicles will suffer from nonholonomic constraint, uncertain disturbance, and various physical limits, when they perform path tracking maneuver autonomously. This paper presents a composite path tracking control strategy to tackle the various problems arising from not only vehicle kinematic but also dynamic levels via two powerful control techniques. The proposed composite control structure consists of a model predictive control (MPC)-based posture controller and a direct adaptive fuzzy-based dynamic controller, respectively. The former posture controller can make the underactuated trailer midpoint follow an arbitrary reference trajectory given by the earth-fixed frame, as well as satisfying various physical limits. Meanwhile, the latter dynamic controller enables the vehicle velocities to track the desired velocities produced by the former one, and the global asymptotical convergence of dynamic controller is strictly guaranteed in the sense of Lyapunov stability theorem. The simulation results illustrate that the presented control strategy can achieve a coordinated control effect for the sophisticated tractor–trailer vehicles, thereby enhancing their movement performance in complex environments.

References

References
1.
Dorrell
,
D.
,
Vinel
,
A.
, and
Cao
,
D. P.
,
2015
, “
Connected Vehicles-Advancements in Vehicular Technologies and Informatics
,”
IEEE Trans. Ind. Electron.
,
62
(
12
), pp.
7824
7826
.
2.
Hingwe
,
P.
,
Tan
,
H. S.
,
Packard
,
A. K.
, and
Tomizuka
,
M.
,
2002
, “
Linear Parameter Varying Controller for Automated Lane Guidance: Experimental Study on Tractor-Trailers
,”
IEEE Trans. Control Syst. Technol.
,
10
(
6
), pp.
793
806
.
3.
Cao
,
D. P.
,
Song
,
X. B.
, and
Ahmadian
,
M.
,
2011
, “
Editors' Perspectives: Road Vehicle Suspension Design, Dynamics, and Control
,”
Veh. Syst. Dyn.
,
49
(
1–2
), pp.
3
28
.
4.
Jujnovich
,
B. A.
, and
Cebon
,
D.
,
2013
, “
Path-Following Steering Control for Articulated Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
3
), p.
031006
.
5.
Yang
,
X. J.
, and
Xiong
,
J.
,
2013
, “
Nonlinear Yaw Dynamics Analysis and Control for the Tractor-Semitrailer Vehicle
,”
Int. J. Heavy Veh. Syst.
,
20
(
3
), pp.
253
288
.
6.
Khalaji
,
A. K.
, and
Moosavian
,
S. A. A.
,
2014
, “
Robust Adaptive Controller for a Tractor–Trailer Mobile Robot
,”
IEEE/ASME Trans. Mechatronics
,
19
(
3
), pp.
943
953
.
7.
Mobini
,
F.
,
Ghaffari
,
A.
, and
Alirezaei
,
M.
,
2015
, “
Non-Linear Optimal Control of Articulated-Vehicle Planar Motion Based on Braking Utilizing the State-Dependent Riccati Equation Method
,”
Proc. Inst. Mech. Eng., Part D
,
229
(
13
), pp.
1774
1787
.
8.
Kang
,
J. Y.
,
Burkett
,
G.
,
Bennett
,
D.
, and
Velinsky
,
S. A.
,
2015
, “
Nonlinear Vehicle Dynamics and Trailer Steering Control of the Towplow, a Steerable Articulated Snowplowing Vehicle System
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
8
), p.
081005
.
9.
Ritzen
,
P.
,
Roebroek
,
E.
,
van de Wouw
,
N.
,
Jiang
,
Z.-P.
, and
Nijmeijer
,
H.
,
2016
, “
Trailer Steering Control of a Tractor-Trailer Robot
,”
IEEE Trans. Control Syst. Technol.
,
24
(
4
), pp.
1240
1252
.
10.
Li
,
X. H.
,
Sun
,
Z. P.
,
Cao
,
D. P.
,
Liu
,
D. X.
, and
He
,
H. G.
,
2017
, “
Development of a New Integrated Local Trajectory Planning and Tracking Control Framework for Autonomous Ground Vehicles
,”
Mech. Syst. Signal Process.
,
87
(Pt. B), pp.
118
137
.
11.
Fang
,
Y. C.
,
Ma
,
B. J.
,
Wang
,
P. C.
, and
Zhang
,
X. B.
,
2012
, “
A Motion Planning-Based Adaptive Control Method for an Underactuated Crane System
,”
IEEE Trans. Control Syst. Technol.
,
20
(
1
), pp.
241
248
.
12.
Sun
,
N.
,
Fang
,
Y. C.
, and
Chen
,
H.
,
2016
, “
A Continuous Robust Antiswing Tracking Control Scheme for Underactuated Crane Systems With Experimental Verification
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
4
), p.
041002
.
13.
Divelbiss
,
A. W.
, and
Wen
,
J. T.
,
1997
, “
Trajectory Tracking Control of a Car-Trailer System
,”
IEEE Trans. Control Syst. Technol.
,
5
(
3
), pp.
269
278
.
14.
Khalaji
,
A. K.
, and
Moosavian
,
S. A. A.
,
2016
, “
Dynamic Modeling and Tracking Control of a Car With n Trailers
,”
Multibody Syst. Dyn.
,
37
(
2
), pp.
211
225
.
15.
Yu
,
S. Y.
,
Böhm
,
C.
,
Chen
,
H.
, and
Allgöwer
,
F.
,
2012
, “
Model Predictive Control of Constrained LPV Systems
,”
Int. J. Control
,
85
(
6
), pp.
671
683
.
16.
Kayacan
,
E.
,
Kayacan
,
E.
,
Ramon
,
H.
, and
Saeys
,
W.
,
2015
, “
Robust Tube-Based Decentralized Nonlinear Model Predictive Control of an Autonomous Tractor-Trailer System
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
447
456
.
17.
Nayl
,
T.
,
Nikolakopoulos
,
G.
, and
Gustafsson
,
T.
,
2015
, “
Effect of Kinematic Parameters on MPC Based On-Line Motion Planning for an Articulated Vehicle
,”
Rob. Auton. Syst.
,
70
, pp.
16
24
.
18.
Li
,
Z. J.
,
Xiao
,
H. Z.
,
Yang
,
C. G.
, and
Zhao
,
Y. W.
,
2015
, “
Model Predictive Control of Nonholonomic Chained Systems Using General Projection Neural Networks Optimization
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
45
(
10
), pp.
1313
1321
.
19.
Yan
,
Z.
, and
Wang
,
J.
,
2012
, “
Model Predictive Control for Tracking of Underactuated Vessels Based on Recurrent Neural Networks
,”
IEEE J. Ocean. Eng.
,
37
(
4
), pp.
717
726
.
20.
Li
,
Z. J.
,
Yang
,
C. G.
,
Su
,
C. Y.
,
Deng
,
J.
, and
Zhang
,
W. D.
,
2016
, “
Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot
,”
IEEE Trans. Control Syst. Technol.
,
24
(
2
), pp.
553
564
.
21.
Feng
,
G.
,
2006
, “
A Survey on Analysis and Design of Model-Based Fuzzy Control Systems
,”
IEEE Trans. Fuzzy Systems
,
14
(
5
), pp.
676
697
.
22.
Tong
,
S. C.
,
Sui
,
S.
, and
Li
,
Y. M.
,
2015
, “
Fuzzy Adaptive Output Feedback Control of MIMO Nonlinear Systems With Partial Tracking Errors Constrained
,”
IEEE Trans. Fuzzy Syst.
,
23
(
4
), pp.
729
742
.
23.
Li
,
Y. M.
,
Tong
,
S. C.
, and
Li
,
T. S.
,
2015
, “
Observer-Based Adaptive Fuzzy Tracking Control of Mimo Stochastic Nonlinear Systems With Unknown Control Directions and Unknown Dead Zones
,”
IEEE Trans. Fuzzy Syst.
,
23
(
4
), pp.
1228
1241
.
24.
Hua
,
C. C.
,
Zhang
,
L. L.
, and
Guan
,
X. P.
,
2017
, “
Distributed Adaptive Neural Network Output Tracking of Leader-Following High-Order Stochastic Nonlinear Multiagent Systems With Unknown Dead-Zone Input
,”
IEEE Trans. Cybern.
,
47
(
1
), pp.
177
185
.
25.
Liu
,
Y. J.
, and
Tong
,
S. C.
,
2015
, “
Adaptive Fuzzy Identification and Control for a Class of Nonlinear Pure-Feedback Mimo Systems With Unknown Dead Zones
,”
IEEE Trans. Fuzzy Syst.
,
23
(
5
), pp.
1387
1398
.
26.
Zhou
,
Q.
,
Shi
,
P.
,
Xu
,
S. Y.
, and
Li
,
H. Y.
,
2013
, “
Adaptive Output Feedback Control for Nonlinear Time-Delay Systems by Fuzzy Approximation Approach
,”
IEEE Trans. Fuzzy Syst.
,
21
(
2
), pp.
301
313
.
27.
Hua
,
C. C.
,
Yang
,
Y. N.
, and
Liu
,
P. X.
,
2015
, “
Output-Feedback Adaptive Control of Networked Teleoperation System With Time-Varying Delay and Bounded Inputs
,”
IEEE/ASME Trans. Mechatronics
,
20
(
5
), pp.
2009
2020
.
28.
Li
,
Y. M.
,
Tong
,
S. C.
, and
Li
,
T. S.
,
2016
, “
Hybrid Fuzzy Adaptive Output Feedback Control Design for Uncertain MIMO Nonlinear Systems With Time-Varying Delays and Input Saturation
,”
IEEE Trans. Fuzzy Syst.
,
24
(
4
), pp.
841
853
.
29.
Liu
,
Y. J.
, and
Tong
,
S. C.
,
2014
, “
Adaptive Fuzzy Control for a Class of Nonlinear Discrete-Time Systems With Backlash
,”
IEEE Trans. Fuzzy Syst.
,
22
(
5
), pp.
1359
1365
.
30.
Lai
,
G. Y.
,
Liu
,
Z.
,
Zhang
,
Y.
,
Chen
,
C. P.
, and
Xie
,
S. L.
,
2017
, “
Adaptive Inversion-Based Fuzzy Compensation Control of Uncertain Pure-Feedback Systems With Asymmetric Actuator Backlash
,”
IEEE Trans. Fuzzy Syst.
,
25
(
1
), pp.
141
155
.
31.
Li
,
Y. M.
,
Tong
,
S. C.
, and
Li
,
T. S.
,
2012
, “
Adaptive Fuzzy Output Feedback Control of Uncertain Nonlinear Systems With Unknown Backlash-Like Hysteresis
,”
Inf. Sci.
,
198
, pp.
130
146
.
32.
Qu
,
T.
,
Chen
,
H.
,
Cao
,
D. P.
,
Guo
,
H. Y.
, and
Gao
,
B. Z.
,
2015
, “
Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill
,”
IEEE Trans. Intell. Transp. Syst.
,
16
(
1
), pp.
365
375
.
33.
Wang
,
T.
,
Gao
,
H. J.
, and
Qiu
,
J. B.
,
2016
, “
A Combined Adaptive Neural Network and Nonlinear Model Predictive Control for Multirate Networked Industrial Process Control
,”
IEEE Trans. Neural Networks Learn. Syst.
,
27
(
2
), pp.
416
425
.
34.
Li
,
H. Y.
,
Wu
,
C. W.
,
Wu
,
L. G.
,
Lam
,
H.-K.
, and
Gao
,
Y. B.
,
2016
, “
Filtering of Interval Type-2 Fuzzy Systems With Intermittent Measurements
,”
IEEE Trans. Cybern.
,
46
(
3
), pp.
668
678
.
35.
Yue
,
M.
,
An
,
C.
,
Du
,
Y.
, and
Sun
,
J. Z.
,
2016
, “
Indirect Adaptive Fuzzy Control for a Nonholonomic/Underactuated Wheeled Inverted Pendulum Vehicle Based on a Data-Driven Trajectory Planner
,”
Fuzzy Sets Syst.
,
290
, pp.
158
177
.
36.
Hu
,
Q. L.
,
Jiang
,
B. Y.
, and
Zhang
,
Y. M.
,
2016
, “
Output Feedback Attitude Tracking for Spacecraft Under Control Saturation and Disturbance
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
1
), p.
011006
.
37.
Li
,
H. Y.
,
Wu
,
C. W.
,
Yin
,
S.
, and
Lam
,
H.-K.
,
2016
, “
Observer-Based Fuzzy Control for Nonlinear Networked Systems Under Unmeasurable Premise Variables
,”
IEEE Trans. Fuzzy Syst.
,
24
(
5
), pp.
1233
1245
.
You do not currently have access to this content.