A design of linear matrix inequality (LMI)-based fractional-order surface for sliding-mode controller of a class of uncertain fractional-order nonlinear systems (FO-NSs) is proposed in this paper. A new switching law is achieved guaranteeing the reachability condition. This control law is established to obtain a sliding-mode controller (SMC) capable of deriving the state trajectories onto the fractional-order integral switching surface and maintain the sliding motion. Using LMIs, a sufficient condition for existence of the sliding surface is derived which ensures the tα asymptotical stability on the sliding surface. Through a numerical example, the superior performance of the new fractional-order sliding mode controller is illustrated in comparison with a previously proposed method.

References

References
1.
Edwards
,
C.
, and
Spurgeon
,
S. K.
,
1998
,
Sliding Mode Control Theory and Applications
,
Taylor & Francis
,
New York
.
2.
Oucheriah
,
S.
,
1997
, “
Robust Sliding Mode Control of Uncertain Dynamic Delay Systems in the Presence of Matched and Unmatched Uncertainties
,”
ASME J. Dyn. Syst. Meas. Control
,
119
(
1
), pp.
69
72
.
3.
Xia
,
Y.
, and
Jia
,
Y.
,
2003
, “
Robust Sliding-Mode Control for Uncertain Time-Delay Systems: An LMI Approach
,”
IEEE Trans. Autom. Control
,
48
(6), pp.
1086
1092
.
4.
Huang
,
R.
,
Lin
,
Y.
, and
Lin
,
Z.
,
2012
, “
Mode-Independent Stabilization of Markovian Jump Systems With Time-Varying Delays: A Sliding Mode Approach
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
5
), p.
051009
.
5.
Gao
,
W.
,
Wang
,
Y.
, and
Homaifa
,
A.
,
1995
, “
Discrete-Time Variable Structure Control Systems
,”
IEEE Trans. Ind. Electron.
,
42
(2), pp.
117
122
.
6.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
7.
Sun
,
H.
,
Chen
,
W.
, and
Chen
,
Y. Q.
,
2009
, “
Variable-Order Fractional Differential Operators in Anomalous Diffusion Modeling
,”
Physica A
,
388
(
21
), pp.
4586
4592
.
8.
Machado
,
J. A. T.
,
Costa
,
A. C.
, and
Quelhas
,
M. D.
,
2011
, “
Fractional Dynamics in DNA
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
8
), pp.
2963
2969
.
9.
Malek
,
H.
,
Dadras
,
S.
, and
Chen
,
Y. Q.
,
2016
, “
Fractional Order Equivalent Series Resistance Modelling of Electrolytic Capacitor and Fractional Order Failure Prediction With Application to Predictive Maintenance
,”
IET Power Electron.
,
9
(
8
), pp.
1608
1613
.
10.
Dadras
,
S.
,
2017
, “
Path Tracking Using Fractional Order Extremum Seeking Controller for Autonomous Ground Vehicle
,”
SAE
Paper No. 2017-01-0094.
11.
Flores-Tlacuahuac
,
A.
, and
Biegler
,
L. T.
,
2014
, “
Optimization of Fractional Order Dynamic Chemical Processing Systems
,”
Ind. Eng. Chem. Res.
,
53
(
13
), pp.
5110
5127
.
12.
Tang
,
Y.
,
Zhang
,
X.
,
Zhang
,
D.
,
Zhao
,
G.
, and
Guan
,
X.
,
2013
, “
Fractional Order Sliding Mode Controller Design for Antilock Braking Systems
,”
Neurocomputing
,
111
, pp.
122
130
.
13.
Malek
,
H.
,
Dadras
,
S.
, and
Chen
,
Y. Q.
,
2014
, “
Application of Fractional Order Current Controller in Three Phase Grid-Connected PV Systems
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, pp.
5224
5229
.
14.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ Controller
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
15.
Dadras
,
S.
, and
Momeni
,
H. R.
,
2014
, “
Fractional-Order Dynamic Output Feedback Sliding Mode Control Design for Robust Stabilization of Uncertain Fractional-Order Nonlinear Systems
,”
Asian J. Control
,
16
(
2
), pp.
489
497
.
16.
Malek
,
H.
,
Dadras
,
S.
, and
Chen
,
Y. Q.
,
2016
, “
Performance Analysis of Fractional Order Extremum Seeking Control
,”
ISA Trans.
,
63
, pp.
281
287
.
17.
Yin
,
C.
,
Chen
,
Y.
, and
Zhong
,
S. M.
,
2014
, “
Fractional-Order Sliding Mode Based Extremum Seeking Control of a Class of Nonlinear Systems
,”
Automatica
,
50
(
12
), pp.
3173
3181
.
18.
Dadras
,
S.
, and
Momeni
,
H. R.
,
2010
, “
Control of a Fractional-Order Economical System Via Sliding Mode
,”
Physica A
,
389
(
12
), pp.
2434
2442
.
19.
Yin
,
C.
,
Cheng
,
Y.
,
Chen
,
Y.
,
Stark
,
B.
, and
Zhong
,
S.
,
2015
, “
Adaptive Fractional-Order Switching-Type Control Method Design for 3D Fractional-Order Nonlinear Systems
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
39
52
.
20.
Hosseinnia
,
S. H.
,
Ghaderi
,
R.
,
Ranjbar
,
A.
,
Mahmoudian
,
M.
, and
Momani
,
S.
,
2010
, “
Sliding Mode Synchronization of an Uncertain Fractional Order Chaotic System
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1637
1643
.
21.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2008
, “
Synchronization of Chaotic Fractional-Order Systems Via Active Sliding Mode Controller
,”
Physica A
,
387
(
1
), pp.
57
70
.
22.
Choi
,
H. H.
,
1997
, “
A New Method for Variable Structure Control System Design: A Linear Matrix Inequality Approach
,”
Automatica
,
33
(
11
), pp.
2089
2092
.
23.
Dasilva
,
J. M. A.
,
Edwards
,
C.
, and
Spurgeon
,
S. K.
,
2009
, “
Sliding-Mode Output-Feedback Control Based on LMIs for Plants With Mismatched Uncertainties
,”
IEEE Trans. Ind. Electron.
,
56
(9), pp.
3675
3683
.
24.
Dadras
,
S.
, and
Momeni
,
H. R.
,
2013
, “
Passivity-Based Fractional-Order Integral Sliding Mode Control Design for Uncertain Fractional-Order Nonlinear Systems
,”
Mechatronics
,
23
(
7
), pp.
880
887
.
25.
Mobayen
,
S.
,
Johari Majd
,
V.
, and
Sojoodi
,
M.
,
2012
, “
An LMI-Based Composite Nonlinear Feedback Terminal Sliding-Mode Controller Design or Disturbed MIMO Systems
,”
Math. Comput. Simul.
,
85
, pp.
1
10
.
26.
Lan
,
Y.-H.
, and
He
,
L.-J.
,
2012
, “
Sliding Mode and LMI Based Control for Fractional Order Unified Chaotic Systems
,”
31st Chinese Control Conference
(
CCC
), Hefei, China, July 25–27, pp.
3192
3196
.http://ieeexplore.ieee.org/document/6390471/
27.
Yin
,
C.
,
Chen
,
Y. Q.
, and
Zhong
,
S. M.
,
2013
, “
LMI Based Design of a Sliding Mode Controller for a Class of Uncertain Fractional-Order Nonlinear Systems
,”
American Control Conference
(
ACC
), Washington, DC, June 17–19, pp.
6511
6516
.
28.
Efe
,
M. O.
,
2008
, “
Fractional Fuzzy Adaptive Sliding Mode Control of a 2-DOF Direct-Drive Robot Arm
,”
IEEE Trans. Syst. Man Cybern.
,
38
(
6
), pp.
1561
1570
.
29.
Moze
,
M.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2007
, “
LMI Characterization of Fractional System Stability
,”
Advances in Fractional Calculus
,
J.
Sabatier
,
O. P.
Agrawal
, and
J. A. T.
Machado
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
419
437
.
30.
Sabatier
,
J.
,
Moze
,
M.
, and
Farges
,
C.
,
2010
, “
LMI Stability Conditions for Fractional Order Systems
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1594
1609
.
31.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2009
, “
Mittag-Leffler Stability of Fractional-Order Nonlinear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.
32.
Dadras
,
S.
,
Dadras
,
S.
,
Malek
,
H.
, and
Chen
,
Y. Q.
,
2017
, “
A Note on the Lyapunov Stability of Fractional Order Nonlinear Systems
,” ASME Paper No. IDETC2017-68270.
33.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequality in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
34.
Ding
,
Y.
, and
Ye
,
H.
,
2009
, “
A Fractional-Order Differential Equation Model of HIV Infection of CD4+ T-Cells
,”
Math. Comput. Model.
,
50
(3–4), pp.
386
392
.
35.
Cipin
,
R.
,
Ondrusek
,
C.
, and
Huzlík
,
R.
,
2014
, “
Fractional-Order Model of DC Motor
,”
Mechatronics
,
2013
, pp.
363
370
.
36.
Petras
,
I.
,
2010
, “
Fractional-Order Memristor-Based Chua's Circuit
,”
IEEE Trans. Circuits Syst. II
,
57
(
12
), pp.
975
979
.
37.
Sabatier
,
J.
,
Cugnet
,
M.
,
Laruelle
,
S.
,
Grugeon
,
S.
,
Sahut
,
B.
,
Oustaloup
,
A.
, and
Tarascon
,
M.
,
2010
, “
A Fractional Order Model for Lead-Acid Battery Crankability Estimation
,”
Commun. Nonlinear. Sci. Numer. Simul.
,
15
(
5
), pp.
1308
1317
.
38.
Mitkowski
,
W.
, and
Skruch
,
P.
,
2013
, “
Fractional-Order Models of the Supercapacitors in the Form of RC Ladder Networks
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
61
(
3
), pp.
581
587
.
39.
Lofberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modelling and Optimization in MATLAB
,”
International Symposium on Computer Aided Control Systems Design
(
CACSD
), New Orleans, LA, Sept. 2–4, pp.
284
289
.
40.
Valério
,
D.
,
2005
, “
Ninteger v.2.3 Fractional Control Toolbox for MATLAB
,” Instituto Superior Técnico, Lisbon, Portugal, accessed July 11, 2017, http://web.ist.utl.pt/Duarte.Valerio/Ninteger/Ninteger.htm
41.
Yin
,
C.
,
Dadras
,
S.
, and
Zhong
,
S. M.
,
2012
, “
Design an Adaptive Sliding Mode Controller for Drive-Response Synchronization of Two Different Uncertain Fractional-Order Chaotic Systems With Fully Unknown Parameters
,”
J. Franklin Inst.
,
349
(
10
), pp.
3078
3101
.
42.
Bohannan
,
G. W.
,
2008
, “
Analog Fractional Order Controller in Temperature and Motor Control Applications
,”
J. Vib. Control
,
14
(
9–10
), pp.
1487
1498
.
43.
Valerio
,
D.
, and
Sa da Costa
,
J.
,
2005
, “
Time-Domain Implementation of Fractional Order Controllers
,”
IEEE Proc. Control Theory Appl.
,
152
(
5
), pp.
539
552
.
44.
Oustaloup
,
A.
,
Levron
,
F.
,
Mathieu
,
B.
, and
Nanot
,
F. M.
,
2000
, “
Frequency-Band Complex Noninteger Differentiator, Characterization and Synthesis
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
,
47
(
1
), pp.
25
39
.
You do not currently have access to this content.