This paper will study the exponential stable and state feedback stabilization of time delay singular systems with saturation actuators. Some sufficient conditions for existence of controller are obtained by using the linear matrix inequalities (LMIs) and integral inequality approach (IIA). When these LMIs are feasible, an explicit expression of controller is obtained. Based on Lyapunov–Krasovskii functional (LKF) techniques, a novel exponential stabilization criterion has been also derived in terms of LMIs which can be easily solved with efficient convex optimization algorithm. Our results are less conservative than some existing ones, and the decision variables involved in this paper are less than them. Examples illustrate our results as less conservative than those reported in the literature.

References

References
1.
Dai
,
L.
,
1989
,
Singular Control Systems
,
Springer-Verlag
,
Berlin
.
2.
Baser
,
U.
, and
Sahin
,
U.
,
2011
, “
Improved Delay-Dependent Robust Stabilization of Singular Systems
,”
Int. J. Innovative Comput. Inf. Control
,
7
(1), pp.
177
187
.
3.
Boukas
,
E. K.
, and
Liu
,
Z. K.
,
2003
, “
Delay-Dependent Stability Analysis of Singular Linear Continuous-Time System
,”
IEEE Proc. Control Theory Appl.
,
150
(
4
), pp.
325
330
.
4.
Boukas
,
E. K.
, and
Al-Muthairi
,
N. F.
,
2006
, “
Delay-Dependent Stabilization of Singular Linear Systems With Delays
,”
Int. J. Innovative Comput. Inf. Control
,
2
, pp.
283
291
.
5.
Feng
,
Z. G.
,
Lam
,
J.
, and
Gao
,
H. J.
,
2011
, “
Dissipativity Analysis of Singular Time-Delay Systems
,”
Automatica
,
47
(
11
), pp.
2548
2552
.
6.
Feng
,
Z. G.
, and
Lam
,
J.
,
2015
, “
On Reachable Set Estimation of Singular Systems
,”
Automatica
,
52
, pp.
146
153
.
7.
Fridman
,
E.
,
2001
, “
A Lyapunov-Based Approach to Stability of Descriptor Systems With Delay
,”
IEEE Conference on Decision and Control
(
CDC
), Orlando, FL, Dec. 4–7, pp.
2850
2855
.
8.
Fridman
,
E.
,
2002
, “
Stability of Linear Descriptor Systems With Delay: A Lyapunov Based Approach
,”
J. Math. Anal. Appl.
,
273
(
1
), pp.
24
44
.
9.
Fridman
,
E.
, and
Shaked
,
U.
,
2002
, “
H∞-Control of Linear State-Delay Descriptor Systems: An LMI Approach
,”
Linear Algebra Appl.
,
351–352
, pp.
271
302
.
10.
Gao
,
H. L.
,
Zhu
,
S. Q.
,
Chen
,
Z. L.
, and
Xu
,
B. G.
,
2005
, “
Delay-Dependent State Feedback Guaranteed Cost Control Uncertain Singular Time-Delay Systems
,”
IEEE Conference on Decision and Control, and European Control Conference
(
CDC-ECC
), Seville, Spain, Dec. 12–15, pp.
4354
4359
.
11.
Lewis
,
F. L.
,
1986
, “
A Survey of Linear Singular Systems
,”
Circuits Syst. Signal Process.
,
5
(
1
), pp.
3
36
.
12.
Li
,
Z. X.
,
Su
,
H. Y.
,
Gu
,
Y.
, and
Wu
,
Z. G.
,
2013
, “
Exponential Stability Analysis for Discrete-Time Singular Systems With Randomly Occurring Delay
,”
Circuits Syst. Signal Process.
,
32
(
5
), pp.
2231
2242
.
13.
Liu
,
P.-L.
,
2012
, “
Further Results on the Exponential Stability Criteria for Time Delay Singular Systems With Delay-Dependence
,”
Int. J. Innovative Comput. Inf. Control
,
8
(6), pp.
4015
4024
.http://www.ijicic.org/11-02079-1.pdf
14.
Liu
,
P.-L.
,
2013
, “
Further Results on the Stability Analysis of Singular Systems With Time-Varying Delay: A Delay Decomposition Approach
,”
Int. J. Anal.
,
2013
, p.
721407
.
15.
Li
,
J. K.
,
2010
, “
Robust Guaranteed Cost Control for Singular Time-Delay Systems With Saturation Factors
,”
Chinese Control and Decision Conference
(
CCDC
), Xuzhou, China, May 26–28, pp.
340
343
.
16.
Su
,
H. Y.
,
Ji
,
X. F.
, and
Chu
,
J.
,
2006
, “
Delay-Dependent Robust Control for Uncertain Singular Time-Delay Systems
,”
Asian J. Control
,
8
(2), pp.
180
189
.
17.
Zhang
,
B. Y.
,
Lam
,
J.
, and
Xu
,
S. Y.
,
2015
, “
Relaxed Results on Reachable Set Estimation of Time-Delay Systems With Bounded Peak Inputs
,”
Int. J. Robust Nonlinear Control
,
26
(9), pp.
1994
2007
.
18.
Zhang
,
B. Y.
,
Lam
,
J.
, and
Xu
,
S. Y.
,
2015
, “
Stability Analysis of Distributed Delay Neural Networks Based on Relaxed Lyapunov–Krasovskii Functional
,”
IEEE Trans. Neural Networks Learn. Syst.
,
26
(
7
), pp.
1480
1492
.
19.
Zhong
,
R. X.
, and
Yang
,
Z.
,
2006
, “
Delay-Dependent Robust Control of Descriptor Systems With Time Delay
,”
Asian J. Control
,
8
(1), pp.
36
44
.
20.
Zhou
,
S.
,
Li
,
Z.
, and
Zhang
,
C.
,
2010
, “
Delay Decomposition Approach to Delay-Dependent Stability for Singular Time-Delay Systems
,”
IET Control Theory Appl.
,
4
(
11
), pp.
2613
2620
.
21.
Bernstein
,
D. S.
, and
Michel
,
A. N.
,
1995
, “
A Chronological Bibliography on Saturating Actuators
,”
Int. J. Robust Nonlinear Control
,
5
(
5
), pp.
375
380
.
22.
Liu
,
P.-L.
, and
Su
,
T.-J.
,
1999
, “
Stability Analysis of Uncertain Time-Delay Systems With Saturating Actuator
,”
IEEE International Symposium on Industrial Electronics
(
ISIE
), Bled, Slovenia, July 12–16, pp.
1076
1081
.
23.
Liu
,
P.-L.
,
2005
, “
Delay-Dependent Asymptotic Stabilization for Uncertain Time-Delay Systems With Saturating Actuators
,”
Int. J. Appl. Math. Comput. Sci.
,
15
(1), pp.
45
51
.http://zbc.uz.zgora.pl/Content/2580/Vol15No1-106.pdf
24.
Liu
,
P. L.
,
2011
, “
Delay-Dependent Stabilization for Linear Time-Delay Uncertain Systems With Saturating Actuators
,”
Int. J. Gen. Syst.
,
40
(
3
), pp.
301
312
.
25.
Liu
,
P. L.
,
2011
, “
Exponential Delay Dependent Stabilization for Time-Varying Delay Systems With Saturating Actuator
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
1
), p.
014502
.
26.
Manitius
,
A. Z.
,
1984
, “
Feedback Controllers for a Wind Tunnel Model Involving a Delay: Analytical Design and Numerical Simulation
,”
IEEE Trans. Autom. Control
,
29
(
12
), pp.
1058
1068
.
27.
Zhou
,
B.
,
Lin
,
Z.
, and
Duan
,
G.
,
2010
, “
Stabilization of Linear Systems With Input Delay and Saturation—A Parametric Lyapunov Equation Approach
,”
Int. J. Robust Nonlinear Control
,
20
(13), pp.
1502
1519
.
28.
Zhou
,
B.
,
Lin
,
Z.
, and
Duan
,
G. R.
,
2012
, “
Truncated Predictor Feedback for Linear Systems With Long Time-Varying Input Delays
,”
Automatica
,
48
(
10
), pp.
2387
2399
.
29.
Lan
,
W.
, and
Huang
,
J.
,
2003
, “
Semiglobal Stabilization and Output Regulation of Singular Linear Systems With Input Saturation
,”
IEEE Trans. Autom. Control
,
48
(
7
), pp.
1274
1280
.
30.
Zhou
,
W.-Z.
,
Lu
,
R.-Q.
,
Su
,
H.-Y.
, and
Chu
,
J.
,
2004
, “
Robust Stabilization for Singular Systems With Time-Delays and Saturating Controls
,”
American Control Conference
(
ACC
), Boston, MA, June 30–July 2, pp.
4986
4991
.http://ieeexplore.ieee.org/document/1384640/
31.
Sun
,
Y. J.
,
2003
, “
Exponential Stability for Continuous-Time Singular Systems With Multiple Time Delays
,”
ASME J. Dyn. Syst. Meas. Control
,
125
(
2
), pp.
262
264
.
32.
Yue
,
D.
,
Lam
,
J.
, and
Ho
,
D. W. C.
,
2005
, “
Delay-Dependent Robust Exponential Stability of Uncertain Descriptor Systems With Time-Varying Delays
,”
Dyn. Contin. Discrete Impulsive Syst. B
,
12
(1), pp.
129
149
.http://hdl.handle.net/10722/156728
33.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
You do not currently have access to this content.