The design of nonlinear tracking controller for antagonistic tendon-driven joint has garnered considerable attention, whereas many existing control methodologies are impractical in the real-time applications due to complexity of computations. In this work, a robust adaptive control method for controlling antagonistic tendon-driven joint is mainly studied by combining adaptive control with mapping filtered forwarding technique. To enhance the robustness of the closed-loop systems, the true viscous friction coefficients are not needed to be known in our controller design. Typically, to tackle the problem of “explosion of complexity,” filters are introduced to bridge the virtual controls such that the controller is decomposed into several submodules. Mappings and their analytic derivatives are computed by these filters, and the mathematical operations of nonlinearities are greatly simplified. The block diagram of this controller of tendon-driven joint is provided, and controller performances are validated through simulations.

References

References
1.
Hirzinger
,
G.
,
Albu-Schaffer
,
A.
,
Hahnle
,
M.
,
Schaefer
,
I.
, and
Sporer
,
N.
,
2001
, “
On a New Generation of Torque Controlled Light-Weight Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
3356
3363
.
2.
Hirzinger
,
G.
,
Sporer
,
N.
,
Albu-Schaffer
,
A.
,
Hahnle
,
M.
, Krenn, R., Pascucci, A., and Schedl, M.,
2002
, “
DLR's Torque-Controlled Light Weight Robot III—Are We Reaching the Technological Limits Now?
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Washington, DC, May 11–15, pp.
1710
1716
.
3.
Migliore
,
S. A.
,
Brown
,
E. A.
, and
DeWeerth
,
S. P.
,
2005
, “
Biologically Inspired Joint Stiffness Control
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Barcelona, Spain, Apr. 18–22, pp.
4508
4513
.
4.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Van Ham
,
R.
,
Van Damme
,
M.
,
Duran
,
B. M. Y.
, and
Beyl
,
P.
,
2006
, “
Exploiting Natural Dynamics to Reduce Energy Consumption by Controlling the Compliance of Soft Actuators
,”
Int. J. Rob. Res.
,
25
(
4
), pp.
343
358
.
5.
Palli
,
G.
,
Melchiorri
,
C.
,
Wimbock
,
T.
,
Grebenstein
,
M.
, and
Hirzinger
,
G.
,
2007
, “
Feedback Linearization and Simultaneous Stiffness-Position Control of Robots With Antagonistic Actuated Joints
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Rome, Italy, Apr. 10–14, pp.
4367
4372
.
6.
Palli
,
G.
,
2007
, “
Model and Control of Tendon Actuated Robots
,”
Ph.D. dissertation
, University of Bologna, Bologna, Italy.
7.
Jiang
,
Y. X.
,
Ding
,
S. H.
,
Zhao
,
D. A.
, and
Ji
,
W.
,
2015
, “
Straight-Line Tracking Control of an Agricultural Vehicle With Finite-Time Control Technique
,”
Asian J. Control
,
17
(
6
), pp.
2218
2228
.
8.
Mebarki
,
R.
, and
Lippiello
,
V.
,
2014
, “
Image-Based Control for Aerial Manipulation
,”
Asian J. Control
,
16
(
3
), pp.
646
656
.
9.
Miao
,
Z. Q.
, and
Wang
,
Y. N.
,
2015
, “
Adaptive Control of Simultaneous Stabilization and Tracking of Unicycle Mobile Robots
,”
Asian J. Control
,
17
(
6
), pp.
2277
2288
.
10.
Mason
,
M. T.
, and
Salisbury
,
J. K.
, Jr.,
1985
, Robot Hands and the Mechanics of Manipulation, MIT Press, Cambridge, MA.
11.
Spong
,
M. W.
,
1987
, “
Modeling and Control of Elastic Joint Robots
,”
ASME J. Dyn. Syst. Meas. Control
,
109
(
4
), pp.
310
318
.
12.
Kawamura
,
S.
,
Kino
,
H.
, and
Won
,
C.
,
2000
, “
High-Speed Manipulation by Using Parallel Wire-Driven Robots
,”
Robotica
,
18
(1), pp.
13
21
.
13.
Bundhoo
,
V.
,
Haslam
,
E.
,
Birch
,
B.
, and
Park
,
E. J.
,
2009
, “
A Shape Memory Alloy-Based Tendon-Driven Actuation System for Biomimetic Artificial Fingers—Part I: Design and Evaluation
,”
Robotica
,
27
(
1
), pp.
131
146
.
14.
Shimamoto
,
K.
,
Suzuki
,
D.
, and
Ohnishi
,
K.
,
2014
, “
Bilateral Control for 4-DOF Manipulator With a Tendon-Driven Spherical Joint Mechanism
,”
13th IEEE International Workshop on Advanced Motion Control
(
AMC
), Yokohama, Japan, Mar. 14–16, pp.
290
295
.
15.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
, Burdet, E., Caldwell, D. G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., and Haddadin, S.,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
16.
Palli
,
G.
,
Natale
,
C.
,
May
,
C.
, Melchiorri, C., and Würtz, T.,
2013
, “
Modeling and Control of the Twisted String Actuation System
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
664
673
.
17.
Palli
,
G.
,
Hosseini
,
M.
,
Moriello
,
L.
, and
Melchiorri
,
C.
,
2015
, “
Modeling and Identification of a Variable Stiffness Joint Based on Twisted String Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Congress Center Hamburg, Hamburg, Germany, Sept. 28–Oct. 2, pp.
1757
1762
.
18.
Wimböck
,
T.
,
Ott
,
C.
, and
Hirzinger
,
G.
,
2010
, “
Immersion and Invariance Control for an Antagonistic Joint With Nonlinear Mechanical Stiffness
,”
IEEE Conference on Decision and Control
(
CDC
), Atlanta, GA, Dec. 15–17, pp.
1128
1135
.
19.
Zhang
,
X.
,
Huang
,
X. L.
, and
Lu
,
H. Q.
,
2015
, “
Mapping Filtered Forwarding-Based Trajectory Tracking Control
,”
J. Franklin Inst.
,
352
(
12
), pp.
5735
5757
.
20.
Astolfi
,
A.
, and
Ortega
,
R.
,
2003
, “
Immersion and Invariance: A New Tool for Stabilization and Adaptive Control of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
48
(
4
), pp.
590
606
.
21.
Lee
,
K. W.
, and
Singh
,
S. N.
,
2010
, “
Noncertainty-Equivalent Adaptive Missile Control Via Immersion and Invariance
,”
J. Guid. Control Dyn.
,
33
(
3
), pp.
655
665
.
22.
Lee
,
K. W.
, and
Singh
,
S. N.
,
2009
, “
Immersion and Invariance-Based Adaptive Control of a Nonlinear Aeroelastic System
,”
J. Guid. Control Dyn.
,
32
(
4
), pp.
1100
1110
.
23.
Tagne
,
G.
,
Talj
,
R.
, and
Charara
,
A.
,
2013
, “
Immersion and Invariance Control for Reference Trajectory Tracking of Autonomous Vehicles
,”
16th International IEEE Annual Conference on Intelligent Transportation Systems
(
ITSC
), Hague, The Netherlands, Oct. 6–9, pp.
2322
2328
.
24.
Acosta
,
J. Á.
,
Ortega
,
R.
,
Astolfi
,
A.
, and
Sarras
,
I.
,
2008
, “
A Constructive Solution for Stabilization Via Immersion and Invariance: The Cart and Pendulum System
,”
Automatica
,
44
(
9
), pp.
2352
2357
.
25.
Sarras
,
I.
,
Siguerdidjane
,
H. B.
, and
Ortega
,
R.
,
2010
, “
Stabilization of the Experimental Cart–Pendulum System With Proven Domain of Attraction
,”
Eur. J. Control
,
16
(
4
), pp.
329
340
.
26.
Rapp
,
P.
,
Klünder
,
M.
,
Sawodny
,
O.
, and
Tarín
,
C.
,
2012
, “
Nonlinear Adaptive and Tracking Control of a Pneumatic Actuator Via Immersion and Invariance
,”
IEEE Annual Conference on Decision and Control
(
CDC
), Maui, HI, Dec. 10–13, pp.
4145
4151
.
27.
Manjarekar
,
N. S.
,
Banavar
,
R. N.
, and
Ortega
,
R.
,
2012
, “
Stabilization of a Synchronous Generator With a Controllable Series Capacitor Via Immersion and Invariance
,”
Int. J. Robust Nonlinear
,
22
(
8
), pp.
858
874
.
28.
Sarras
,
I.
,
Acosta
,
J. Á.
,
Ortega
,
R.
, and
Mahindrakar
,
A. D.
,
2013
, “
Constructive Immersion and Invariance Stabilization for a Class of Underactuated Mechanical Systems
,”
Automatica
,
49
(
5
), pp.
1442
1448
.
29.
Kemmetmüeller
,
W.
, and
Kugi
,
A.
,
2010
, “
Immersion and Invariance-Based Impedance Control for Electrohydraulic Systems
,”
Int. J. Robust Nonlinear
,
20
(
7
), pp.
725
744
.
30.
Li
,
X.
, and
Cheah
,
C. C.
,
2014
, “
Adaptive Neural Network Control of Robot Based on a Unified Objective Bound
,”
IEEE Trans. Control Syst. Technol.
,
22
(3), pp.
1032
1043
.
31.
Li
,
X.
, and
Cheah
,
C. C.
,
2013
, “
Global Task-Space Adaptive Control of Robot
,”
Automatica
,
49
(
1
), pp.
58
69
.
32.
Kobayashi
,
H.
, and
Ozawa
,
R.
,
2003
, “
Adaptive Neural Network Control of Tendon-Driven Mechanisms With Elastic Tendons
,”
Automatica
,
39
(
9
), pp.
1509
1519
.
You do not currently have access to this content.