This paper presents a model to explain complex nonminimum phase (CNMP) zeros seen in the noncollocated frequency response of a large-displacement XY flexure mechanism, which employs multiple double parallelogram flexure modules (DPFMs) as building-blocks. Geometric nonlinearities associated with large displacement along with the kinematic under-constraint in the DPFM lead to a coupling between the X and Y direction displacements. Via a lumped-parameter model that captures the most relevant geometric nonlinearity, it is shown that specific combinations of the operating point (i.e., flexure displacement) and mass asymmetry (due to manufacturing tolerances) give rise to CNMP zeros. This model demonstrates the merit of an intentionally asymmetric design over an intuitively symmetric design in avoiding CNMP zeros. Furthermore, a study of how the eigenvalues and eigenvectors of the flexure mechanism vary with the operating point and mass asymmetry indicates the presence of curve veering when the system transitions from minimum phase to CNMP. Based on this, the hypothesis of an inherent correlation between CNMP zeros and curve veering is proposed.

References

References
1.
Awtar
,
S.
,
2003
, “
Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms
,”
Sc.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.
2.
Yong
,
Y.
,
Moheimani
,
S.
,
Kenton
,
B. J.
, and
Leang
,
K.
,
2012
, “
Invited Review Article: High-Speed Flexure-Guided Nanopositioning: Mechanical Design and Control Issues
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
121101
.
3.
Sadeghian
,
H.
,
Koster
,
N.
, and
van den Dool
,
T.
, 2013, “
Introduction of a High Throughput SPM for Defect Inspection and Process Control
,”
Proc. SPIE
,
8681
, p.
868127
.
4.
Mohammadi
,
A.
,
Fowler
,
A. G.
,
Yong
,
Y. K.
, and
Moheimani
,
S. R.
,
2014
, “
A Feedback Controlled MEMS Nanopositioner for On-Chip High-Speed AFM
,”
J. Microelectromech. Syst.
,
23
(
3
), pp.
610
619
.
5.
Awtar
,
S.
, and
Parmar
,
G.
,
2013
, “
Design of a Large Range XY Nanopositioning System
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021008
.
6.
Parmar
,
G.
,
Barton
,
K.
, and
Awtar
,
S.
,
2014
, “
Large Dynamic Range Nanopositioning Using Iterative Learning Control
,”
Precis. Eng.
,
38
(
1
), pp.
48
56
.
7.
Parmar
,
G. K.
,
2014
, “
Dynamics and Control of Flexure-Based Large Range Nanopositioning Systems
,”
Ph.D. dissertation
, University of Michigan, Ann Arbor, MI.
8.
William
,
S.
,
2011
,
Control System: Advanced Methods
,
Taylor and Francis Group
,
Boca Raton, FL
.
9.
Freudenberg
,
J. S.
, and
Looze
,
D. P.
,
1985
, “
Right Half Plane Poles and Zeros and Design Trade-Offs in Feedback Systems
,”
IEEE Trans. Autom. Control
,
30
(
6
), pp.
555
565
.
10.
Lan
,
C.-C.
,
Lee
,
K.-M.
, and
Liou
,
J.-H.
,
2009
, “
Dynamics of Highly Elastic Mechanisms Using the Generalized Multiple Shooting Method: Simulations and Experiments
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2164
2178
.
11.
Akano
,
T. T.
, and
Fakinlede
,
O. A.
,
2013
, “
An Effective Finite Element Method for Beam Based Compliant Mechanism
,”
Int. J. Eng. Technol.
,
3
(
4
), pp.
407
419
.
12.
Shilpiekandula
,
V.
, and
Youcef-Toumi
,
K.
, 2008, “
Characterization of Dynamic Behavior of Flexure-Based Mechanisms for Precision Angular Alignment
,”
IEEE American Control Conference
(
ACC
), Seattle, WA, June 11–13, pp.
3005
3010
.
13.
Yue-Qing
,
Y.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Ying
,
Y.
, and
Mao-Gen
,
H.
,
2005
, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
760
765
.
14.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
,
2003
, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1469
1487
.
15.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
126
131
.
16.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators, a Literature Review
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.
17.
Timoshenko
,
S.
, and
Goodier
,
J.
,
1951
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
18.
Reissner
,
E.
,
1973
, “
On One-Dimensional Large-Displacement Finite-Strain Beam Theory
,”
Stud. Appl. Math.
,
52
(
2
), pp.
87
95
.
19.
Jonker
,
J.
, and
Meijaard
,
J.
,
2013
, “
A Geometrically Non-Linear Formulation of a Three-Dimensional Beam Element for Solving Large Deflection Multibody System Problems
,”
Int. J. Non-Linear Mech.
,
53
, pp.
63
74
.
20.
Sen
,
S.
,
2013
, “
Beam Constraint Model: Generalized Nonlinear Closed-Form Modeling of Beam Flexures for Flexure Mechanism Design
,”
Ph.D. dissertation
, University of Michigan, Ann Arbor, MI.
21.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
22.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
23.
Awtar
,
S.
,
Slocum
,
A.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
24.
Modi
,
V.
,
1974
, “
Attitude Dynamics of Satellites With Flexible Appendages—A Brief Review
,”
J. Spacecr. Rockets
,
11
(
11
), pp.
743
751
.
25.
Pandalai
,
K.
,
1987
, “
Large Amplitude Free Flexural Vibration of Structures
,”
J. Reinf. Plast. Compos.
,
6
(
2
), pp.
153
161
.
26.
Kane
,
T.
,
Ryan
,
R.
, and
Banerjee
,
A.
,
1987
, “
Dynamics of a Cantilever Beam Attached to a Moving Base
,”
J. Guid. Control Dyn.
,
10
(
2
), pp.
139
151
.
27.
Yang
,
J.
,
Jiang
,
L.
, and
Chen
,
D. C.
,
2004
, “
Dynamic Modelling and Control of a Rotating Euler–Bernoulli Beam
,”
J. Sound Vib.
,
274
(
3
), pp.
863
875
.
28.
Dasilva
,
M. R. M. C.
,
1988
, “
Non-Linear Flexural Flexural Torsional Extensional Dynamics of Beams—1: Formulation
,”
Int. J. Solids Struct.
,
24
(
12
), pp.
1225
1234
.
29.
Jonker
,
B.
,
1989
, “
A Finite Element Dynamic Analysis of Spatial Mechanisms With Flexible Links
,”
Comput. Methods Appl. Mech. Eng.
,
76
(
1
), pp.
17
40
.
30.
Nayfeh
,
A. H.
,
1973
, “
Nonlinear Transverse Vibrations of Beams With Properties That Vary Along the Length
,”
J. Acoust. Soc. Am.
,
53
(
3
), pp.
766
770
.
31.
Zavodney
,
L. D.
, and
Nayfeh
,
A. H.
,
1989
, “
The Non-Linear Response of a Slender Beam Carrying a Lumped Mass to a Principal Parametric-Excitation—Theory and Experiment
,”
Int. J. Non-Linear Mech.
,
24
(
2
), pp.
105
125
.
32.
Moeenfard
,
H.
, and
Awtar
,
S.
,
2014
, “
Modeling Geometric Nonlinearities in the Free Vibration of a Planar Beam Flexure With a Tip Mass
,”
ASME J. Mech. Des.
,
136
(
4
), p.
044502
.
33.
Edmunds
,
R. S.
, and
Mingori
,
D.
,
1983
, “
Robust Control System Design Techniques for Large Flexible Space Structures Having Non-Collocated Sensors and Actuators
,” Proc. of the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO, Feb. 5–9, p. 2294.
34.
Cannon
,
R. H.
, and
Rosenthal
,
D. E.
,
1984
, “
Experiments in Control of Flexible Structures With Noncollocated Sensors and Actuators
,”
J. Guid. Control Dyn.
,
7
(
5
), pp.
546
553
.
35.
Spector
,
V.
, and
Flashner
,
H.
,
1989
, “
Sensitivity of Structural Models for Noncollocated Control Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
111
(
4
), pp.
646
655
.
36.
Martin
,
G. D.
,
1978
, “
On the Control of Flexible Mechanical Systems
,” Ph.D. thesis, Stanford University, Stanford, CA.
37.
Gevarter
,
W. B.
,
1970
, “
Basic Relations for Control of Flexible Vehicles
,”
AIAA J.
,
8
(
4
), pp.
666
672
.
38.
Spector
,
V. A.
, and
Flashner
,
H.
,
1990
, “
Modeling and Design Implications of Noncollocated Control in Flexible Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
2
), pp.
186
193
.
39.
Miu
,
D. K.
,
1991
, “
Physical Interpretation of Transfer Function Zeros for Simple Control Systems With Mechanical Flexibilities
,”
ASME J. Dyn. Syst., Meas., Control
,
113
(
3
), pp.
419
424
.
40.
Cannon
,
R. H.
, and
Schmitz
,
E.
,
1984
, “
Initial Experiments on the Endpoint Control of a Flexible One-Link Robot
,”
Int. J. Rob. Res.
,
3
(
3
), pp.
62
75
.
41.
Tohyama
,
M.
, and
Lyon
,
R. H.
,
1989
, “
Zeros of a Transfer-Function in a Multi-Degree-of-Freedom Vibrating System
,”
J. Acoust. Soc. Am.
,
86
(
5
), pp.
1854
1863
.
42.
Loix
,
N.
,
Kozanek
,
J.
, and
Foltete
,
E.
,
1996
, “
On the Complex Zeros of Non-Collocated Systems
,”
J. Struct. Control
,
3
(
1–2
), pp.
79
87
.
43.
Hoagg
,
J. B.
,
Chandrasekar
,
J.
, and
Bernstein
,
D. S.
,
2007
, “
On the Zeros, Initial Undershoot, and Relative Degree of Collinear Lumped-Parameter Structures
,”
ASME J. Dyn. Syst., Meas., Control
,
129
(
4
), pp.
493
502
.
44.
Awtar
,
S.
, and
Craig
,
K. C.
,
2004
, “
Electromagnetic Coupling in a DC Motor and Tachometer Assembly
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
3
), pp.
684
691
.
45.
Cui
,
L.
,
2017
, “
Complex Non-Minimum Phase Zeros in the Dynamics of Flexures
,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI.
46.
Irving
,
R. S.
,
2003
,
Integers, Polynomials, and Rings: A Course in Algebra
,
Springer Science & Business Media
,
New York
.
47.
Leissa
,
A. W.
,
1974
, “
On a Curve Veering Aberration
,”
Z. Angew. Math. Phys.
,
25
(
1
), pp.
99
111
.
48.
Gallina
,
A.
,
Pichler
,
L.
, and
Uhl
,
T.
,
2011
, “
Enhanced Meta-Modelling Technique for Analysis of Mode Crossing, Mode Veering and Mode Coalescence in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2297
2312
.
49.
Igusa
,
T.
,
1993
, “
Critical Configurations of System Subjected to Wide-Band Input
,”
J. Sound Vib.
,
168
(
3
), pp.
525
541
.
50.
Pierre
,
C.
,
1988
, “
Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures
,”
J. Sound Vib.
,
126
(
3
), pp.
485
502
.
You do not currently have access to this content.