This paper investigates the control problem for static boost type converters using a high gain state feedback robust controller incorporating an integral action. The robust feature allows to achieve the required performance in the presence of parametric uncertainties, while the integral action provides an offset free performance with respect to the desired levels of voltage. The adopted high gain approach is motivated by both fundamental as well as practical considerations, namely the underlying fundamental potential and the design parameter specification simplicity. The stability and convergence analysis has been carried out using an adequate Lyapunov approach, and the control system calibration is achieved throughout a few design parameters which are closely related to the desired dynamical performances. The effectiveness of the proposed control approach has been corroborated by numerical simulations and probing experimental results.

References

References
1.
Sahu
,
B.
, and
Rincón-Mora
,
G.
,
2004
, “
A Low Voltage, Dynamic, Noninverting, Synchronous Buck-Boost Converter for Portable Applications
,”
IEEE Trans. Power Electron.
,
19
(
2
), pp.
443
452
.
2.
Walker
,
G.
, and
Sernia
,
P.
,
2004
, “
Cascaded DC-DC Converter Connection of Photovoltaic Modules
,”
IEEE Trans. Power Electron.
,
19
(
4
), pp.
1130
1139
.
3.
Khaligh
,
A.
,
Rahimi
,
A.
, and
Emadi
,
A.
,
2008
, “
Modified Pulse-Adjustment Technique to Control DC/DC Converters Driving Variable Constant-Power Loads
,”
IEEE Trans. Ind. Electron.
,
55
(
3
), pp.
1133
1146
.
4.
Jin
,
K.
,
Ruan
,
X.
,
Yang
,
M.
, and
Xu
,
M.
,
2009
, “
A Hybrid Fuel Cell Power System
,”
IEEE Trans. Ind. Electron.
,
56
(
4
), pp.
1212
1222
.
5.
Erickson
,
R.
, and
Maksimovic
,
D.
,
2001
,
Fundamentals of Power Electronics
,
2nd ed.
,
Springer-Verlag
,
New York
.
6.
Redl
,
R.
, and
Sokal
,
N.
,
1986
, “
Near-Optimum Dynamic Regulation of DC-DC Converters Using Feed-Forward of Output Current and Input Voltage With Current-Mode Control
,”
IEEE Trans. Power Electron.
,
3
(
3
), pp.
181
192
.
7.
Ridley
,
R.
,
1991
, “
A New, Continuous-Time Model for Current-Mode Control
,”
IEEE Trans. Power Electron.
,
6
(
2
), pp.
271
280
.
8.
Maksimovic
,
D.
,
Zane
,
R.
, and
Erickson
,
R.
,
2004
, “
Impact of Digital Control in Power Electronics
,”
IEEE
International Symposium on Power Semiconductor Devices ICs
, Sept. 20, pp.
13
22
.
9.
Morales
,
J.
,
Leyva-Ramos
,
J.
,
Carbajal
,
E.
, and
Ortiz-Lopez
,
M.
,
2008
, “
Average Current-Mode Control Scheme for a Quadratic Buck Converter With a Single Switch
,”
IEEE Trans. Power Electron.
,
23
(
1
), pp.
485
490
.
10.
Olalla
,
C.
,
Leyva
,
R.
,
El Aroudi
,
A.
, and
Garces
,
P.
,
2009
, “
QFT Robust Control of Current-Mode Converters: Application to Power Conditioning Regulators
,”
Int. J. Electron.
,
96
(
5
), pp.
503
520
.
11.
Chang
,
Y.
, and
Lai
,
Y.
,
2009
, “
Parameter Tuning Method for Digital Power Converter With Predictive Current-Mode Control
,”
IEEE Trans. Power Electron.
,
24
(
12
), pp.
2910
2919
.
12.
Leyva-Ramos
,
J.
, and
Morales-Saldana
,
J.
,
2000
, “
Uncertainty Models for Switch-Mode DC-DC Converters
,”
IEEE Trans. Circuits Syst. I
,
47
(
2
), pp.
200
203
.
13.
Leung
,
F.
,
Tam
,
P.
, and
Li
,
C.
,
1991
, “
The Control of Switching DC-DC Converters-a General LWR Problem
,”
IEEE Trans. Ind. Electron.
,
38
(
1
), pp.
65
71
.
14.
Leung
,
F.
,
Tam
,
P.
, and
Li
,
C.
,
1993
, “
An Improved LQR-Based Controller for Switching DC-DC Converters
,”
IEEE Trans. Ind. Electron.
,
40
(
5
), pp.
521
528
.
15.
Garofalo
,
F.
,
Marino
,
P.
,
Scala
,
S.
, and
Vasca
,
F.
,
1994
, “
Control of DC-DC Converters With Linear Optimal Feedback and Nonlinear Feedforward
,”
IEEE Trans. Power Electron.
,
9
(
6
), pp.
607
615
.
16.
Leyva
,
R.
,
Martínez-Salamero
,
L.
,
Valderrama-Blavi
,
H.
,
Maixé
,
J.
,
Giral
,
R.
, and
Guinjoan
,
F.
,
2001
, “
Linear State-Feedback Control of a Boost Converter for Large-Signal Stability
,”
IEEE Trans. Circuits Syst. I
,
48
(
4
), pp.
418
424
.
17.
Olalla
,
C.
,
Leyva
,
R.
,
El Aroudi
,
A.
, and
Queinnec
,
I.
,
2009
, “
Robust LQR Control for PWM Converters: An LMI Approach
,”
IEEE Trans. Ind. Electron.
,
56
(
7
), pp.
2548
2558
.
18.
Olalla
,
C.
,
Leyva
,
R.
,
El Aroudi
,
A.
,
Garces
,
P.
, and
Queinnec
,
I.
,
2010
, “
LMI Robust Control Design for Boost PWM Converters
,”
IET Power Electron.
,
3
(
1
), pp.
75
85
.
19.
Olalla
,
C.
,
Queinnec
,
I.
,
Leyva
,
R.
, and
El Aroudi
,
A.
,
2012
, “
Optimal State-Feedback Control of Bilinear DC–DC Converters With Guaranteed Regions of Stability
,”
IEEE Trans. Ind. Electron.
,
59
(
10
), pp.
3868
3880
.
20.
Olalla
,
C.
,
Leyva
,
R.
,
Queinnec
,
I.
, and
Maksimovic
,
D.
,
2012
, “
Robust Gain-Scheduled Control of Switched-Mode DC–DC Converters
,”
IEEE Trans. Power Electron.
,
27
(
6
), pp.
3006
3019
.
21.
Shirazi
,
M.
,
Zane
,
R.
, and
Maksimovic
,
D.
,
2009
, “
An Autotuning Digital Controller for DC–DC Power Converters Based on Online Frequency-Response Measurement
,”
IEEE Trans. Power Electron.
,
24
(
11
), pp.
2578
2588
.
22.
Ebrahimzadeh
,
M.
, and
Rahmati
,
A.
,
2010
, “
Adaptive and Fast-Response Controller for Boost PFC Converter With Wide Range of Operating Conditions
,”
1st IEEE Power Electronic & Drive Systems & Technologies Conference
(
PEDSTC
), Feb. 17–18, pp.
157
162
.
23.
Sira-Ramirez
,
H.
,
1991
, “
Nonlinear PI Controller Design for Switchmode DC-to-DC Power Converters
,”
IEEE Trans. Circuits Syst.
,
38
(
4
), pp.
410
417
.
24.
Beccuti
,
A.
,
Mariethoz
,
S.
,
Cliquennois
,
S.
,
Wang
,
S.
, and
Morari
,
M.
,
2009
, “
Explicit Model Predictive Control of DC–DC Switched-Mode Power Supplies With Extended Kalman Filtering
,”
IEEE Trans. Ind. Electron.
,
56
(
6
), pp.
1864
1874
.
25.
Sira-Ramírez
,
H.
,
Ortega
,
R.
, and
García-Esteban
,
M.
,
1998
, “
Adaptive Passivity-Based Control of Average DC-to-DC Power Converter Models
,”
Int. J. Adapt. Control Signal Process.
,
12
(
1
), pp.
63
80
.
26.
Leyva
,
R.
,
Cid-Pastor
,
A.
,
Alonso
,
C.
,
Queinnec
,
I.
,
Tarbouriech
,
S.
, and
Martinez-Salamero
,
L.
,
2006
, “
Passivity-Based Integral Control of a Boost Converter for Large-Signal Stability
,”
IEEE Proc. Control Theory Appl.
,
153
(
2
), pp.
139
146
.
27.
Sanders
,
S.
, and
Verghese
,
G.
,
1992
, “
Lyapunov-Based Control for Switched Power Converters
,”
IEEE Trans. Power Electron.
,
7
(
1
), pp.
17
24
.
28.
Alonge
,
F.
,
D'Ippolito
,
F.
,
Raimondi
,
F.
, and
Tumminaro
,
S.
,
2007
, “
Nonlinear Modeling of DC/DC Converters Using the Hammerstein's Approach
,”
IEEE Trans. Power Electron.
,
22
(
4
), pp.
1210
1221
.
29.
Alonge
,
F.
,
D'Ippolito
,
F.
, and
Cangemi
,
T.
,
2008
, “
Identification and Robust Control of DC/DC Converter Hammerstein Model
,”
IEEE Trans. Power Electron.
,
23
(
6
), pp.
2990
3003
.
30.
Feng
,
G.
,
Meyerc
,
E.
, and
Liu
,
Y.
,
2007
, “
A New Digital Control Algorithm to Achieve Optimal Dynamic Performance in DC-to-DC Converters
,”
IEEE Trans. Power Electron.
,
22
(
4
), pp.
1489
1498
.
31.
Nazarzadeh
,
J.
, and
Jafarian
,
M.
,
2013
, “
Applying Bilinear Time-Optimal Control System in Boost Converters
,”
IET Power Electron.
,
7
(
4
), pp.
850
860
.
32.
El Fadil
,
H.
,
Giri
,
F.
,
El Magueri
,
O.
, and
Chaoui
,
F.
,
2009
, “
Control of DC–DC Power Converters in the Presence of Coil Magnetic Saturation
,”
Control Eng. Pract.
,
17
(
7
), pp.
849
862
.
33.
Mattavelli
,
P.
,
Rossetto
,
L.
,
Spiazzi
,
G.
, and
Tenti
,
P.
,
1995
, “
General-Purpose Fuzzy Controller for DC/DC Converters
,”
IEEE
Applied Power Electronics Conference and Exposition
, Mar. 5–9, pp.
723
730
.
34.
Perry
,
A.
,
Feng
,
G.
,
Liu
,
Y.
, and
Sen
,
P.
,
2007
, “
A Design Method for PI-Like Fuzzy Logic Controllers for DC–DC Converter
,”
IEEE Trans. Ind. Electron.
,
54
(
5
), pp.
2688
2696
.
35.
Wai
,
R.
,
2001
, “
Total Sliding-Mode Controller for PM Synchronous Servo Motor Drive Using Recurrent Fuzzy Neural Network
,”
IEEE Trans. Ind. Electron.
,
48
(
5
), pp.
926
944
.
36.
Wai
,
R.
, and
Shih
,
L.
,
2012
, “
Adaptive Fuzzy-Neural-Network Design for Voltage Tracking Control of a DC–DC Boost Converter
,”
IEEE Trans. Power Electron.
,
27
(
4
), pp.
2104
2115
.
37.
Oucheriah
,
S.
, and
Guo
,
L.
,
2013
, “
PWM-Based Adaptive Sliding-Mode Control for Boost DC–DC Converters
,”
IEEE Trans. Ind. Electron.
,
60
(
8
), pp.
3291
3294
.
38.
Sira-Ramirez
,
H.
,
1987
, “
Sliding Motions in Bilinear Switched Networks
,”
IEEE Trans. Circuits Syst.
,
34
(
8
), pp.
919
933
.
39.
Tan
,
S.
,
Lai
,
Y.
,
Tse
,
C.
,
Martínez-Salamero
,
L.
, and
Wu
,
C.
,
2007
, “
A Fast-Response Sliding-Mode Controller for Boost-Type Converters With a Wide Range of Operating Conditions
,”
IEEE Trans. Ind. Electron.
,
54
(
6
), pp.
3276
3286
.
40.
Tan
,
S.
,
Lai
,
Y.
, and
Tse
,
C.
,
2008
, “
General Design Issues of Sliding-Mode Controllers in DC–DC Converters
,”
IEEE Trans. Ind. Electron.
,
55
(
3
), pp.
1160
1174
.
41.
Wai
,
R.
, and
Shih
,
L.
,
2011
, “
Design of Voltage Tracking Control for DC–DC Boost Converter Via Total Sliding-Mode Technique
,”
IEEE Trans. Ind. Electron.
,
58
(
6
), pp.
2502
2511
.
42.
Bédoui
,
A.
,
Farza
,
M.
,
MSaad
,
M.
, and
Ksouri
,
M.
,
2008
, “
Robust Nonlinear Controllers for Bioprocesses
,”
Proc.
,
41
(
2
), pp.
15541
15546
.
43.
O'Reilly
,
J.
,
1983
,
Observers for Linear Systems
, Vol.
170
,
Academic Press
,
London
.
44.
Astrom
,
K.
, and
Hagglund
,
T.
,
2006
,
Advanced PID Control
,
ISA
,
Durham, NC
.
45.
Oukaour
,
A.
,
Pouliquen
,
M.
,
Tala-Ighi
,
B.
,
Gualous
,
H.
,
Pigeon
,
E.
,
Gehan
,
O.
, and
Boudar
,
B.
,
2013
, “
Supercapacitors Aging Diagnosis Using Least Square Algorithm
,”
Microelectron. Reliab.
,
53
(
9–11
), pp.
1638
1642
.
46.
Farza
,
M.
,
MSaad
,
M.
, and
Rossignol
,
L.
,
2004
, “
Observer Design for a Class of MIMO Nonlinear Systems
,”
Automatica
,
40
(
1
), pp.
135
143
.
47.
Khalil
,
H.
, and
Esfandiari
,
F.
,
1993
, “
Semiglobal Stabilization of a Class of Nonlinear Systems Using Output Feedback
,”
IEEE Trans. Autom. Control
,
38
(
9
), pp.
1412
1415
.
48.
ECSS
,
2004
, “
Electrical and Electronic Standard
,” European Cooperation for Space Standardization, ESA Requirements and Standards Division, Noordwik, The Netherlands, Standard No. ECSS-E20A.
49.
Farza
,
M.
,
Othman
,
S.
,
Hammouri
,
H.
, and
Fick
,
M.
,
1997
, “
Discrete-Time Nonlinear Observer-Based Estimators for the On-Line Estimation of the Kinetic Rates in Bioreactors
,”
Bioprocess Eng.
,
17
(
4
), pp.
247
255
.
50.
Farza
,
M.
,
Busawon
,
K.
, and
Hammouri
,
H.
,
1998
, “
Simple Nonlinear Observers for On-Line Estimation of Kinetic Rates in Bioreactors
,”
Automatica
,
34
(
3
), pp.
301
318
.
51.
Farza
,
M.
,
M'Saad
,
M.
,
Fall
,
L.
,
Pigeon
,
E.
,
Gehan
,
O.
, and
Mosrati
,
R.
,
2014
, “
Continuous-Discrete Time Observer for a Class of MIMO Nonlinear Systems
,”
IEEE Trans. Autom. Control,
pp.
1060
1065
.
52.
Gauthier
,
J.
,
Hammouri
,
H.
, and
Othman
,
S.
,
1992
, “
A Simple Observer for Nonlinear Systems Applications to Bioreactors
,”
IEEE Trans. Autom. Control
,
37
(
6
), pp.
875
880
.
53.
Khalil
,
H.
,
2002
,
Nonlinear Systems
,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
You do not currently have access to this content.