A nonlinearly broadband tuneable energy harvesting device has been designed, fabricated, and tested based on the nonlinear dynamical response of a parametrically excited clamped–clamped beam carrying a central point mass as the core element; a tuning mechanism in the form of an initial axial displacement applied to one of the clamped–clamped beam ends has been introduced to the system which enables tuning of device's natural frequency. Magnets have been used as the central point mass which generates a backward electromotive force (EMF) as they move through a coil when parametrically excited. The tuning parameter was set to a value for which the primary and principal nonlinear resonant regions become close to each other; hence, the frequency bandwidth is broadened substantially, leading to a larger amount of electrical power harvested; moreover, the nonlinear behavior, due to flexural/restoring-electromagnetic couplings, increased the operating bandwidth considerably. The system was parametrically excited using an electrodynamic shaker, and the corresponding motions of the magnets were measured. By increasing the tuning parameter, the fundamental natural frequency reduces and the system nonlinearity significantly increases; it has been discovered that when the initial axial displacement is approximately the thickness of the beam the fundamental and principal parametric resonance branches combine thus, the frequency bandwidth (and hence the range of the energy harvested) is significantly increased due to the parametric excitation, nonlinear behavior, and initial axial displacement.

References

References
1.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), p.
R1
.
2.
Renno
,
J. M.
,
Daqaq
,
M. F.
, and
Inman
,
D. J.
,
2009
, “
On the Optimal Energy Harvesting From a Vibration Source
,”
J. Sound Vib.
,
320
(
1–2
), pp.
386
405
.
3.
Khameneifar
,
F.
,
Arzanpour
,
S.
, and
Moallem
,
M.
,
2013
, “
A Piezoelectric Energy Harvester for Rotary Motion Applications: Design and Experiments
,”
IEEE/ASME Trans. Mechatronics
,
18
(
5
), pp.
1527
1534
.
4.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2009
, “
Reversible Hysteresis for Broadband Magnetopiezoelastic Energy Harvesting
,”
Appl. Phys. Lett.
,
95
(
17
), p.
174103
.
5.
Bonello
,
P.
, and
Rafique
,
S.
,
2010
, “
Modeling and Analysis of Piezoelectric Energy Harvesting Beams Using the Dynamic Stiffness and Analytical Modal Analysis Methods
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011009
.
6.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.
7.
Basset
,
P.
,
Galayko
,
D.
,
Cottone
,
F.
,
Guillemet
,
R.
,
Blokhina
,
E.
,
Marty
,
F.
, and
Bourouina
,
T.
,
2014
, “
Electrostatic Vibration Energy Harvester With Combined Effect of Electrical Nonlinearities and Mechanical Impact
,”
J. Micromech. Microeng.
,
24
(
3
), p.
035001
.
8.
Tao
,
K.
,
Lye
,
S. W.
,
Miao
,
J.
, and
Hu
,
X.
,
2015
, “
Design and Implementation of an Out-of-Plane Electrostatic Vibration Energy Harvester With Dual-Charged Electret Plates
,”
Microelectron. Eng.
,
135
, pp.
32
37
.
9.
Westby
,
E. R.
, and
Halvorsen
,
E.
,
2012
, “
Design and Modeling of a Patterned-Electret-Based Energy Harvester for Tire Pressure Monitoring Systems
,”
IEEE/ASME Trans. Mechatronics
,
17
(
5
), pp.
995
1005
.
10.
Tvedt
,
L. G. W.
,
Duy Son
,
N.
, and
Halvorsen
,
E.
,
2010
, “
Nonlinear Behavior of an Electrostatic Energy Harvester Under Wide and Narrowband Excitation
,”
J. Microelectromech. Syst.
,
19
(
2
), pp.
305
316
.
11.
Nguyen
,
S. D.
, and
Halvorsen
,
E.
,
2011
, “
Nonlinear Springs for Bandwidth-Tolerant Vibration Energy Harvesting
,”
J. Microelectromech. Syst.
,
20
(
6
), pp.
1225
1227
.
12.
Sardini
,
E.
, and
Serpelloni
,
M.
,
2011
, “
An Efficient Electromagnetic Power Harvesting Device for Low-Frequency Applications
,”
Sens. Actuators, A
,
172
(
2
), pp.
475
482
.
13.
Ooi
,
B. L.
, and
Gilbert
,
J. M.
,
2014
, “
Design of Wideband Vibration-Based Electromagnetic Generator by Means of Dual-Resonator
,”
Sens. Actuators, A
,
213
, pp.
9
18
.
14.
Barton
,
D. A. W.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
.
15.
Saha
,
C. R.
,
O'Donnell
,
T.
,
Wang
,
N.
, and
McCloskey
,
P.
,
2008
, “
Electromagnetic Generator for Harvesting Energy From Human Motion
,”
Sens. Actuators, A
,
147
(
1
), pp.
248
253
.
16.
Han
,
M.
,
Li
,
Z.
,
Sun
,
X.
, and
Zhang
,
H.
,
2014
, “
Analysis of an In-Plane Electromagnetic Energy Harvester With Integrated Magnet Array
,”
Sens. Actuators, A
,
219
, pp.
38
46
.
17.
Tang
,
X.
,
Lin
,
T.
, and
Zuo
,
L.
,
2014
, “
Design and Optimization of a Tubular Linear Electromagnetic Vibration Energy Harvester
,”
IEEE/ASME Trans. Mechatronics
,
19
(
2
), pp.
615
622
.
18.
Yang
,
B.
, and
Lee
,
C.
,
2010
, “
Non-Resonant Electromagnetic Wideband Energy Harvesting Mechanism for Low Frequency Vibrations
,”
Microsyst. Technol.
,
16
(
6
), pp.
961
966
.
19.
Tang
,
X.
, and
Zuo
,
L.
,
2011
, “
Enhanced Vibration Energy Harvesting Using Dual-Mass Systems
,”
J. Sound Vib.
,
330
(
21
), pp.
5199
5209
.
20.
Shahruz
,
S. M.
,
2006
, “
Design of Mechanical Band-Pass Filters for Energy Scavenging
,”
J. Sound Vib.
,
292
(
3–5
), pp.
987
998
.
21.
Leland
,
E. S.
, and
Wright
,
P. K.
,
2006
, “
Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload
,”
Smart Mater. Struct.
,
15
(
5
), p.
1413
.
22.
Eichhorn
,
C.
,
Goldschmidtboeing
,
F.
, and
Woias
,
P.
,
2009
, “
Bidirectional Frequency Tuning of a Piezoelectric Energy Converter Based on a Cantilever Beam
,”
J. Micromech. Microeng.
,
19
(
9
), p.
094006
.
23.
Peters
,
C.
,
Maurath
,
D.
,
Schock
,
W.
,
Mezger
,
F.
, and
Manoli
,
Y.
,
2009
, “
A Closed-Loop Wide-Range Tunable Mechanical Resonator for Energy Harvesting Systems
,”
J. Micromech. Microeng.
,
19
(
9
), p.
094004
.
24.
Xie
,
L.
, and
Cai
,
M.
,
2015
, “
Increased Energy Harvesting and Reduced Accelerative Load for Backpacks Via Frequency Tuning
,”
Mech. Syst. Signal Process.
,
58–59
, pp.
399
415
.
25.
Youngsu
,
C.
,
Hubert
,
K.
, and
Maurizio
,
P.
,
2013
, “
Energy Harvesting From Underwater Base Excitation of a Piezoelectric Composite Beam
,”
Smart Mater. Struct.
,
22
(
11
), p.
115026
.
26.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
27.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
28.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2015
, “
Axial Suspension Compliance and Compression for Enhancing Performance of a Nonlinear Vibration Energy Harvesting Beam System
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011004
.
29.
Cao
,
J.
,
Zhou
,
S.
,
Inman
,
D. J.
, and
Lin
,
J.
,
2015
, “
Nonlinear Dynamic Characteristics of Variable Inclination Magnetically Coupled Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021015
.
30.
Abdelkefi
,
A.
,
Nayfeh
,
A. H.
, and
Hajj
,
M. R.
,
2012
, “
Global Nonlinear Distributed-Parameter Model of Parametrically Excited Piezoelectric Energy Harvesters
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1147
1160
.
31.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1–2
), pp.
515
530
.
32.
Liu
,
H.
,
Lee
,
C.
,
Kobayashi
,
T.
,
Tay
,
C. J.
, and
Quan
,
C.
,
2012
, “
Investigation of a MEMS Piezoelectric Energy Harvester System With a Frequency-Widened-Bandwidth Mechanism Introduced by Mechanical Stoppers
,”
Smart Mater. Struct.
,
21
(
3
), p.
035005
.
33.
Chen
,
L.-Q.
, and
Jiang
,
W.-A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
34.
Ghayesh
,
M. H.
,
Kazemirad
,
S.
, and
Reid
,
T.
,
2012
, “
Nonlinear Vibrations and Stability of Parametrically Exited Systems With Cubic Nonlinearities and Internal Boundary Conditions: A General Solution Procedure
,”
Appl. Math. Modell.
,
36
(
7
), pp.
3299
3311
.
35.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2015
, “
Chaotic Motion of a Parametrically Excited Microbeam
,”
Int. J. Eng. Sci.
,
96
, pp.
34
45
.
36.
Ghayesh
,
M.
, and
Farokhi
,
H.
,
2016
, “
Parametric Instability of Microbeams in Supercritical Regime
,”
Nonlinear Dyn.
,
83
(
3
), pp.
1171
1183
.
37.
Daqaq
,
M. F.
,
Stabler
,
C.
,
Qaroush
,
Y.
, and
Seuaciuc-Osório
,
T.
,
2009
, “
Investigation of Power Harvesting Via Parametric Excitations
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
545
557
.
You do not currently have access to this content.