A modular nonlinear observer for inertial navigation aided by pseudo-range measurements is designed and analyzed. The attitude observer is based on a recent nonlinear complementary filter that uses magnetometer and accelerometer vector measurements to correct the quaternion attitude estimate driven by gyro measurements, including gyro bias estimation. A tightly integrated translational motion observer is driven by accelerometer measurements, employs the attitude estimates, and makes corrections using the pseudo-range and range-rate measurements. It estimates position, range bias errors, velocity and specific force in an earth-fixed Cartesian coordinate frame, where the specific force estimate is used as a reference vector for the accelerometer measurements in the attitude observer. The exponential stability of the feedback interconnection of the two observers is analyzed and found to have a semiglobal region of attraction with respect to the attitude observer initialization and local region of attraction with respect to translational motion observer initialization. The latter is due to linearization of the range measurement equations that is underlying the selection of injection gains by solving a Riccati equation. In typical applications, the pseudo-range equations admit an explicit algebraic solution that can be easily computed and used to accurately initialize the position and velocity estimates. Hence, the limited region of attraction is not seen as a practical limitation of the approach for many applications. Advantages of the proposed nonlinear observer are low computational complexity and a solid theoretical foundation.

References

References
1.
Farrell
,
J. A.
,
2008
,
Aided Navigation: GPS With High Rate Sensors
,
McGraw-Hill
,
New York
.
2.
Grewal
,
M.
,
Weill
,
L. R.
, and
Andrews
,
A. P.
,
2007
,
Global Positioning Systems, Inertial Navigation and Integration
,
Wiley
,
New York
.
3.
Groves
,
P. D.
,
2013
,
Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems
,
2nd ed.
, Artech House Remote Sensing Library, London.
4.
Gustafsson
,
F.
,
2012
,
Statistical Sensor Fusion
,
Studentliteratur, Linköpings University
,
Linköping, Sweden
.
5.
Markley
,
F.
,
2003
, “
Attitude Error Representation for Kalman Filtering
,”
J. Guid., Control Dyn.
,
26
(
2
), pp.
311
317
.
6.
Crassidis
,
J. L.
,
Markley
,
F. L.
, and
Cheng
,
Y.
,
2007
, “
Survey of Nonlinear Attitude Estimation Methods
,”
J. Guid., Control Dyn.
,
30
(
1
), pp.
12
28
.
7.
Reif
,
K.
,
Sonnemann
,
F.
, and
Unbehauen
,
R.
,
1998
, “
An EKF-Based Nonlinear Observer With a Prescribed Degree of Stability
,”
Automatica
,
34
(
9
), pp.
1119
1123
.
8.
Grip
,
H. F.
,
Fossen
,
T. I.
,
Johansen
,
T. A.
, and
Saberi
,
A.
,
2013
, “
Nonlinear Observer for GNSS-Aided Inertial Navigation With Quaternion-Based Attitude Estimation
,”
American Control Conference
, Washington, DC, June 17–19, pp.
272
279
.
9.
Morgado
,
M.
,
Batista
,
P.
,
Oliveira
,
P.
, and
Silvestre
,
C.
,
2011
, “
Position and Velocity USBL/IMU Sensor-Based Navigation Filter
,”
IFAC
World Congress
, Milan, Italy, Aug. 28–Sept. 3, pp.
13642
13647
.
10.
Batista
,
P.
,
Silvestre
,
C.
, and
Oliveira
,
P.
,
2013
, “
GAS Tightly Coupled LBL/USBL Position and Velocity Filter for Underwater Vehicles
,”
European Control Conference
, Zurich, Switzerland, July 17–19, pp.
2982
2987
.
11.
Batista
,
P.
,
2015
, “
GES Long Baseline Navigation With Unknown Sound Velocity and Discrete-Time Range Measurements
,”
IEEE Trans. Control Syst. Technol.
,
23
(
1
), pp.
219
230
.
12.
Batista
,
P.
,
Silvestre
,
C.
, and
Oliveira
,
P.
,
2014
, “
Sensor-Based Long Baseline Navigation: Observability Analysis and Filter Design
,”
Asian J. Control
,
16
(
4
), pp.
974
994
.
13.
Batista
,
P.
,
Silvestre
,
C.
, and
Oliveira
,
P.
,
2015
, “
Tightly Coupled Long Baseline/Ultra-Short Baseline Integrated Navigation Systems
,”
Int. J. Syst. Sci.
,
47
(
8
), pp.
1837
1855
.
14.
Batista
,
P.
,
2014
, “
GES Long Baseline Navigation With Clock Offset Estimation
,”
European Control Conference
, Strasbourg, France, June 24–27, pp.
3011
3016
.
15.
Mahoney
,
R.
,
Hamel
,
T.
, and
Pfimlin
,
J.-M.
,
2008
, “
Nonlinear Complementary Filters on the Special Orthogonal Group
,”
IEEE Trans. Autom. Control
,
53
(
5
), pp.
1203
1218
.
16.
Grip
,
H. F.
,
Fossen
,
T. I.
,
Johansen
,
T. A.
, and
Saberi
,
A.
,
2012
, “
Attitude Estimation Using Biased Gyro and Vector Measurements With Time-Varying Reference Vectors
,”
IEEE Trans. Autom. Control
,
57
(
5
), pp.
1332
1338
.
17.
Johansen
,
T. A.
, and
Fossen
,
T. I.
,
2015
, “
Nonlinear Observer for Inertial Navigation Aided by Pseudo-Range and Range-Rate Measurements
,”
European Control Conference
, Linz, Austria, July 15–17, pp.
1673
1680
.
18.
Bryne
,
T. H.
,
Hansen
,
J. M.
,
Rogne
,
R. H.
,
Sokolova
,
N.
,
Fossen
,
T. I.
, and
Johansen
,
T. A.
,
2016
, “
Nonlinear Observers for Integrated INS/GNSS Navigation—Implementation Aspects
,” IEEE Control Systems Magazine (in press).
19.
Hansen
,
J. M.
,
Johansen
,
T. A.
, and
Fossen
,
T. I.
,
2016
, “
Tightly Coupled Integrated Inertial and Real-Time-Kinematic Positioning Approach Using Nonlinear Observer
,”
American Control Conference
, Boston, MA, pp.
5511
5518
.
20.
Dardari
,
D.
,
Falletti
,
E.
, and
Luise
,
M.
,
2012
,
Satellite and Terrestrial Radio Positioning Techniques
,
Academic Press
,
Cambridge, MA
.
21.
Bancroft
,
S.
,
1985
, “
An Algebraic Solution to the GPS Equations
,”
IEEE Trans. Aerosp. Electron. Syst.
,
21
(1), pp.
56
59
.
22.
Chaffee
,
J.
, and
Abel
,
J.
,
1994
, “
On the Exact Solutions of Pseudorange Equations
,”
IEEE Trans. Aerosp. Electron. Syst.
,
30
(
4
), pp.
1021
1030
.
23.
Yan
,
J.
,
Tiberus
,
C. C. J. M.
,
Janssen
,
G. J. M.
,
Tennissen
,
P. J. G.
, and
Bellusci
,
G.
,
2013
, “
Review of Range-Based Positioning Algorithms
,”
IEEE Aerosp. Electron. Syst. Mag., Part II
,
28
(
8
), pp.
2
27
.
24.
Shuster
,
M.
, and
Oh
,
S.
,
1981
, “
Three-Axis Attitude Determination for Vector Observations
,”
J. Guid., Control Dyn.
,
4
(
1
), pp.
70
77
.
25.
Anderson
,
B. D. O.
,
1971
, “
Stability Properties of Kalman–Bucy Filters
,”
J. Franklin Inst.
,
291
(
2
), pp.
137
144
.
26.
Kalman
,
R. E.
, and
Bucy
,
R. S.
,
1961
, “
New Results in Linear Filtering and Prediction Theory
,”
ASME J. Basic Eng.
,
83
(
1
), pp.
95
109
.
27.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
Prentice-Hall
,
Upper Saddle River, NJ
.
28.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
2013
,
Matrix Analysis
,
2 ed.
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.