To increase the performance of closed-loop controlled systems in off-nominal conditions and in the presence of inevitable faults and uncertainties, a systematic approach based on robust convex optimization for adaptive augmenting control design is discussed in this paper. More specifically, this paper addresses the problem of adaptive augmenting controller (AAC) design for systems with time-varying polytopic uncertainty. First, a robust state-feedback controller is designed via robust convex optimization as a baseline controller. The closed-loop polytopic system with the baseline controller is considered as the desired time-varying reference model for the design of a direct state-feedback adaptive controller. Next using Lyapunov arguments, global stability of combined robust baseline and adaptive augmenting controllers is established. Furthermore, it is proved that tracking error converges to zero asymptotically. A case study for a generic nonminimum phase nonlinear pitch-axis missile autopilot is conducted. Simulation tests are performed to evaluate stability and performance of nonlinear time-varying closed-loop system in the presence of uncertainties in pitching moment and normal force coefficients, and unmodeled time delays. In addition, results of the simulations indicate satisfactory robustness in case of severe loss of control effectiveness event.

References

References
1.
Wise
,
K. A.
,
Lavretsky
,
E.
, and
Hovakimyan
,
N.
,
2006
, “
Adaptive Control of Flight: Theory, Applications, and Open Problems
,”
2006 American Control Conference
, Minneapolis, MN, June 14–16, IEEE, pp.
5966
5971
.
2.
Lavretsky
,
E.
,
Gadient
,
R.
, and
Gregory
,
I. M.
,
2010
, “
Predictor-Based Model Reference Adaptive Control
,”
J. Guid. Control Dyn.
,
33
(
4
), pp.
1195
1201
.
3.
Lavretsky
,
E.
,
2009
, “
Combined/Composite Model Reference Adaptive Control
,”
IEEE Trans. Autom. Control
,
54
(
11
), pp.
2692
2697
.
4.
Dydek
,
Z. T.
,
Annaswamy
,
A. M.
, and
Lavretsky
,
E.
,
2013
, “
Adaptive Control of Quadrotor UAVS: A Design Trade Study With Flight Evaluations
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1400
1406
.
5.
Nguyen
,
N. T.
,
2012
, “
Optimal Control Modification for Robust Adaptive Control With Large Adaptive Gain
,”
Syst. Control Lett.
,
61
(
4
), pp.
485
494
.
6.
Bošković
,
J. D.
,
Prasanth
,
R.
, and
Mehra
,
R. K.
,
2007
, “
Retrofit Fault-Tolerant Flight Control Design Under Control Effector Damage
,”
J. Guid. Control Dyn.
,
30
(
3
), pp.
703
712
.
7.
Ye
,
D.
, and
Yang
,
G.-H.
,
2006
, “
Adaptive Fault-Tolerant Tracking Control Against Actuator Faults With Application to Flight Control
,”
IEEE Trans. Control Syst. Technol.
,
14
(
6
), pp.
1088
1096
.
8.
Orr
,
J.
, and
Zwieten
,
T. V.
,
2012
, “
Robust, Practical Adaptive Control for Launch Vehicles
,”
AIAA
Paper No. 2012-4549.
9.
Jang
,
J.
,
Annaswamy
,
A. M.
, and
Lavretsky
,
E.
,
2008
, “
Adaptive Control of Time-Varying Systems With Gain-Scheduling
,”
American Control Conference
(
ACC
), Seattle, WA, June 11–13, IEEE, pp.
3416
3421
.
10.
Sang
,
Q.
, and
Tao
,
G.
,
2012
, “
Adaptive Control of Piecewise Linear Systems: The State Tracking Case
,”
IEEE Trans. Autom. Control
,
57
(
2
), pp.
522
528
.
11.
Dydek
,
Z. T.
,
Annaswamy
,
A. M.
, and
Lavretsky
,
E.
,
2010
, “
Adaptive Control and the NASA X-15-3 Flight Revisited
,”
IEEE Control Syst. Mag.
,
30
(
3
), pp.
32
48
.
12.
Pakmehr
,
M.
, and
Yucelen
,
T.
,
2014
, “
Adaptive Control of Uncertain Systems With Gain Scheduled Reference Models
,”
American Control Conference
(
ACC
), Portland, OR, June 4–6, IEEE, pp.
1322
1327
.
13.
Reichert
,
R. T.
,
1992
, “
Dynamic Scheduling of Modern-Robust-Control Autopilot Designs for Missiles
,”
IEEE Control Syst. Mag.
,
12
(
5
), pp.
35
42
.
14.
Wise
,
K. A.
,
2012
, “
Practical Considerations in Robust Control of Missiles
,”
Advances in Missile Guidance, Control, and Estimation
(Automation and Control Engineering),
CRC Press
,
Boca Raton, FL
, pp.
587
662
.
15.
Nichols
,
R. A.
,
Reichert
,
R. T.
, and
Rugh
,
W. J.
,
1993
, “
Gain Scheduling for H-Infinity Controllers: A Flight Control Example
,”
IEEE Trans. Control Syst. Technol.
,
1
(
2
), pp.
69
79
.
16.
Shamma
,
J. S.
, and
Cloutier
,
J. R.
,
1993
, “
Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations
,”
J. Guid. Control Dyn.
,
16
(
2
), pp.
256
263
.
17.
Pellanda
,
P. C.
,
Apkarian
,
P.
, and
Tuan
,
H. D.
,
2002
, “
Missile Autopilot Design Via a Multi-Channel LFT/LPV Control Method
,”
Int. J. Robust Nonlinear Control
,
12
(
1
), pp.
1
20
.
18.
Prempain
,
E.
, and
Postlethwaite
,
I.
,
2008
, “
L2 and H2 Performance Analysis and Gain-Scheduling Synthesis for Parameter-Dependent Systems
,”
Automatica
,
44
(
8
), pp.
2081
2089
.
19.
Theodoulis
,
S.
, and
Duc
,
G.
,
2009
, “
Missile Autopilot Design: Gain-Scheduling and the Gap Metric
,”
J. Guid. Control Dyn.
,
32
(
3
), pp.
986
996
.
20.
Löfberg
,
J.
,
2012
, “
Automatic Robust Convex Programming
,”
Optim. Methods Software
,
27
(
1
), pp.
115
129
.
21.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
, “
Linear Matrix Inequalities in System and Control Theory
,”
Studies in Applied Mathematics
, Vol.
15
,
Society for Industrial and Applied Mathematics (SIAM)
,
Philadelphia, PA
.
22.
Lofberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
IEEE
International Symposium on Computer Aided Control Systems Design
, Taipei, Taiwan, Sept. 4, pp.
284
289
.
23.
MOSEK
,
2014
, “
MOSEK 7: Software for Large-Scale LP, QP, SOCP, SDP, and MIP
,”
MOSEK ApS
, Copenhagen, Denmark.
24.
Sharma
,
M.
,
Lavretsky
,
E.
, and
Wise
,
K.
,
2006
, “
Application and Flight Testing of an Adaptive Autopilot on Precision Guided Munitions
,”
AIAA
Paper No. 2006-6568.
You do not currently have access to this content.