In this paper, a new adaptive tracking controller is developed for a quadrotor unmanned aerial vehicle (UAV) via immersion and invariance (I&I) approach. The controller is able to compensate parametric uncertainties such as the unmeasurable effects of the deviated center-of-gravity (CoG), as well as the aerodynamic coefficients. The globally asymptotic tracking of the desired attitude trajectories is proven via the Lyapunov-based stability analysis and LaSalle's invariance theorem. Real-time experiment results performed on a quadrotor attitude control testbed are given to show the good control performance of the proposed scheme.

References

References
1.
Driessens
,
S.
, and
Pounds
,
P.
,
2015
, “
The Triangular Quadrotor: A More Efficient Quadrotor Configuration
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1517
1526
.
2.
Chen
,
F.
,
Lei
,
W.
,
Tao
,
G.
, and
Jiang
,
B.
,
2016
, “
Actuator Fault Estimation and Reconfiguration Control for the Quad-Rotor Helicopter
,”
Int. J. Adv. Rob. Syst.
,
13
(
33
), pp.
1
8
.
3.
Khebbache
,
H.
,
Tadjine
,
M.
, and
Labiod
,
S.
,
2016
, “
Adaptive Sensor-Fault Tolerant Control for a Class of MIMO Uncertain Nonlinear Systems: Adaptive Nonlinear Filter-Based Dynamic Surface Control
,”
J. Franklin Inst.
,
353
(
6
), pp.
1313
1338
.
4.
Wang
,
L.
, and
Su
,
J.
,
2015
, “
Robust Disturbance Rejection Control for Attitude Tracking of an Aircraft
,”
IEEE Trans. Control Syst. Technol.
,
23
(
6
), pp.
2361
2368
.
5.
Xian
,
B.
,
Dawson
,
D. M.
,
de Queiroz
,
M. S.
, and
Chen
,
J.
,
2004
, “
A Continuous Asymptotic Tracking Control Strategy for Uncertain Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
49
(
7
), pp.
1206
1211
.
6.
Xian
,
B.
, and
Zhang
,
Y.
,
2016
, “
A New Smooth Robust Control Design for Uncertain Nonlinear Systems With Non-Vanishing Disturbances
,”
Int. J. Control
,
89
(
6
), pp.
1285
1302
.
7.
Liu
,
H.
,
Li
,
D.
,
Zuo
,
Z.
, and
Zhong
,
Y.
,
2016
, “
Robust Three-Loop Trajectory Tracking Control for Quadrotors With Multiple Uncertainties
,”
IEEE Trans. Ind. Electron.
,
63
(
4
), pp.
2263
2274
.
8.
Xian
,
B.
,
Diao
,
C.
,
Zhao
,
B.
, and
Xu
,
Z.
,
2015
, “
Nonlinear Robust Output Feedback Tracking Control of a Quadrotor UAV Using Quaternion Representation
,”
Nonlinear Dyn.
,
79
(
4
), pp.
2735
2752
.
9.
Palunko
,
I.
,
Cruz
,
P.
, and
Fierro
,
R.
,
2012
, “
Agile Load Transportation: Safe and Efficient Load Manipulation With Aerial Robots
,”
IEEE Rob. Autom. Mag.
,
19
(
3
), pp.
69
79
.
10.
Palunko
,
I.
, and
Fierro
,
R.
,
2011
, “
Adaptive Control of a Quadrotor With Dynamic Changes in the Center of Gravity
,” 18th IFAC World Congress, IFAC, pp.
2626
2631
.
11.
Antonelli
,
G.
,
Cataldi
,
E.
,
Giordano
,
P. R.
,
Chiaverini
,
S.
, and
Franchi
,
A.
,
2013
, “
Experimental Validation of a New Adaptive Control Scheme for Quadrotors MAVs
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, IEEE, pp.
2439
2444
.
12.
Sun
,
N.
,
Fang
,
Y.
,
Zhang
,
Y.
, and
Ma
,
B.
,
2012
, “
A Novel Kinematic Coupling-Based Trajectory Planning Method for Overhead Cranes
,”
IEEE/ASME Trans. Mechatronics
,
17
(
1
), pp.
166
173
.
13.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
14.
Astolfi
,
A.
, and
Ortega
,
R.
,
2003
, “
Immersion and Invariance: A New Tool for Stabilization and Adaptive Control of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
48
(
4
), pp.
590
606
.
15.
Astolfi
,
A.
,
Karagiannis
,
D.
, and
Ortega
,
R.
,
2008
,
Nonlinear and Adaptive Control With Applications
,
Springer Publishing Company
,
Berlin, Germany
.
16.
Hu
,
J. C.
, and
Zhang
,
H. H.
,
2013
, “
Immersion and Invariance Based Command-Filtered Adaptive Backstepping Control of VTOL Vehicles
,”
Automatica
,
49
(
7
), pp.
2160
2167
.
17.
Lee
,
K. W.
, and
Singh
,
S. N.
,
2010
, “
Noncertainty-Equivalent Adaptive Missile Control Via Immersion and Invariance
,”
J. Guid., Control, Dyn.
,
33
(
3
), pp.
655
665
.
18.
Zachi
,
A. R.
,
Hsu
,
L.
,
Ortega
,
R.
, and
Lizarralde
,
F.
,
2006
, “
Dynamic Control of Uncertain Manipulators Through Immersion and Invariance Adaptive Visual Servoing
,”
Int. J. Rob. Res.
,
25
(
11
), pp.
1149
1159
.
19.
Acosta
,
J.
,
Ortega
,
R.
,
Astolfi
,
A.
, and
Sarras
,
I.
,
2008
, “
A Constructive Solution for Stabilization Via Immersion and Invariance: The Cart and Pendulum System
,”
Automatica
,
44
(
9
), pp.
2352
2357
.
20.
Astolfi
,
A.
,
Ortega
,
R.
, and
Venkatraman
,
A.
,
2010
, “
A Globally Exponentially Convergent Immersion and Invariance Speed Observer for Mechanical Systems With Non-Holonomic Constraints
,”
Automatica
,
46
(
1
), pp.
182
189
.
21.
Craig
,
J. J.
,
2005
,
Introduction to Robotics
,
Prentice Hall
,
Upper Saddle River, NJ
.
22.
Xu
,
R.
, and
Ozguener
,
U.
,
2008
, “
Sliding Mode Control of a Class of Underactuated Systems
,”
Automatica
,
44
(
1
), pp.
233
241
.
23.
Meriam
,
J. L.
, and
Kraige
,
L. G.
,
2012
,
Engineering Mechanics: Dynamics
, Vol.
2
,
Wiley
,
New York
.
You do not currently have access to this content.