An approach for minimizing tracking errors in linear time-invariant (LTI) single-input single-output (SISO) discrete-time systems with nonminimum phase (NMP) zeros using filtered basis functions (FBF) is studied. In the FBF method, the control input to the system is expressed as a linear combination of basis functions. The basis functions are forward filtered using the dynamics of the NMP system, and their coefficients are selected to minimize the error in tracking a given desired trajectory. Unlike comparable methods in the literature, the FBF method is shown to be effective in tracking any desired trajectory, irrespective of the location of NMP zeros in the z-plane. The stability of the method and boundedness of the control input and system output are discussed. The control designer is free to choose any suitable set of basis functions that satisfy the criteria discussed in this paper. However, two rudimentary basis functions, one in time domain and the other in frequency domain, are specifically highlighted. The effectiveness of the FBF method is illustrated and analyzed in comparison with the truncated series (TS) approximation method.

References

References
1.
Tomizuka
,
M.
,
1987
, “
Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst. Meas. Control
,
109
(
1
), pp.
65
68
.
2.
Astrom
,
K.
, and
Wittenmark
,
B.
,
1984
,
Computer Controlled Systems: Theory and Design
,
Prentice Hall
,
Upper Saddle River, NJ
.
3.
Miu
,
D. K.
,
1993
,
Mechatronics: Electromechanics and Contromechanics
,
Springer
,
Heidelberg, Germany
.
4.
Gross
,
E.
, and
Tomizuka
,
M.
,
1994
, “
Experimental Flexible Beam Tip Tracking Control With a Truncated Series Approximation to Uncancelable Inverse Dynamics
,”
IEEE Trans. Control Syst. Technol.
,
2
(
4
), pp.
382
391
.
5.
Torfs
,
D.
,
De Schutter
,
J.
, and
Swevers
,
J.
,
1992
, “
Extended Bandwidth Zero Phase Error Tracking Control of Nonminimal Phase Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
114
(
3
), pp.
347
351
.
6.
Yamada
,
M.
,
Funahashi
,
Y.
, and
Fujiwara
,
S.
,
1997
, “
Zero Phase Error Tracking System With Arbitrarily Specified Gain Characteristics
,”
ASME J. Dyn. Syst. Meas. Control
,
119
(
2
), p.
260
.
7.
Yamada
,
M.
,
Funahashi
,
Y.
, and
Riadh
,
Z.
,
1999
, “
Generalized Optimal Zero Phase Error Tracking Controller Design
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
2
), p.
165
.
8.
Butterworth
,
J. A.
,
Pao
,
L. Y.
, and
Abramovitch
,
D. Y.
,
2012
, “
Analysis and Comparison of Three Discrete-Time Feedforward Model-Inverse Control Techniques for Nonminimum-Phase Systems
,”
Mechatronics
,
22
(
5
), pp.
577
587
.
9.
Fujimoto
,
H.
,
Hori
,
Y.
, and
Kawamura
,
A.
,
2001
, “
Perfect Tracking Control Based on Multirate Feedforward Control With Generalized Sampling Periods
,”
IEEE Trans. Ind. Electron.
,
48
(
3
), pp.
636
644
.
10.
Wen
,
J. T.
, and
Potsaid
,
B.
,
2004
, “
An Experimental Study of a High Performance Motion Control System
,”
American Control Conference
, pp.
5158
5163
.
11.
Weck
,
M.
, and
Ye
,
G.
,
1990
, “
Sharp Corner Tracking Using the IKF Control Strategy
,”
CIRP Ann. Technol.
,
39
(
1
), pp.
437
441
.
12.
Rigney
,
B. P.
,
Pao
,
L. Y.
, and
Lawrence
,
D. A.
,
2009
, “
Nonminimum Phase Dynamic Inversion for Settle Time Applications
,”
IEEE Trans. Control Syst. Technol.
,
17
(
5
), pp.
989
1005
.
13.
Haack
,
B.
, and
Tomizuka
,
M.
,
1991
, “
The Effect of Adding Zeroes to Feedforward Controllers
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
1
), pp.
6
10
.
14.
Hunt
,
L.
,
Meyer
,
G.
, and
Su
,
R.
,
1996
, “
Noncausal Inverses for Linear Systems
,”
IEEE Trans.Autom. Control
,
41
(
4
), pp.
608
611
.
15.
Devasia
,
S.
,
Chen
,
D.
, and
Paden
,
B.
,
1996
, “
Nonlinear Inversion-Based Output Tracking
,”
IEEE Trans. Autom. Control
,
41
(
7
), pp.
930
942
.
16.
Marro
,
G.
,
Prattichizzo
,
D.
, and
Zattoni
,
E.
,
2002
, “
Convolution Profiles for Right Inversion of Multivariable Non-Minimum Phase Discrete-Time Systems
,”
Automatica
,
38
(
10
), pp.
1695
1703
.
17.
Kwon
,
D.-S.
, and
Book
,
W. J.
,
1994
, “
A Time-Domain Inverse Dynamic Tracking Control of a Single-Link Flexible Manipulator
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
2
), p.
193
.
18.
Zou
,
Q.
, and
Devasia
,
S.
,
1999
, “
Preview-Based Stable-Inversion for Output Tracking of Linear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
4
), pp.
625
630
.
19.
Marconi
,
L.
,
Marro
,
G.
, and
Melchiorri
,
C.
,
2001
, “
A Solution Technique for Almost Perfect Tracking of Non-Minimum-Phase, Discrete-Time Linear Systems
,”
Int. J. Control
,
74
(
5
), pp.
496
506
.
20.
Piazzi
,
A.
, and
Visioli
,
A.
,
2005
, “
Using Stable Input-Output Inversion for Minimum-Time Feedforward Constrained Regulation of Scalar Systems
,”
Automatica
,
41
(
2
), pp.
305
313
.
21.
Jetto
,
L.
,
Orsini
,
V.
, and
Romagnoli
,
R.
,
2014
, “
Accurate Output Tracking for Nonminimum Phase Nonhyperbolic and Near Nonhyperbolic Systems
,”
Eur. J. Control
,
20
(
6
), pp.
292
300
.
22.
Devasia
,
S.
,
2011
, “
Nonlinear Minimum-Time Control With Pre- and Post-Actuation
,”
Automatica
,
47
(
7
), pp.
1379
1387
.
23.
Devasia
,
S.
,
1997
, “
Output Tracking With Nonhyperbolic and Near Nonhyperbolic Internal Dynamics: Helicopter Hover Control
,”
J. Guid. Control Dyn.
,
20
(
3
), pp.
573
580
.
24.
Wang
,
H.
,
Kim
,
K.
, and
Zou
,
Q.
,
2013
, “
B-Spline-Decomposition-Based Output Tracking With Preview for Nonminimum-Phase Linear Systems
,”
Automatica
,
49
(
5
), pp.
1295
1303
.
25.
Jetto
,
L.
,
Orsini
,
V.
, and
Romagnoli
,
R.
,
2015
, “
Spline Based Pseudo-Inversion of Sampled Data Non-Minimum Phase Systems for an Almost Exact Output Tracking
,”
Asian J. Control
,
17
(
5
), pp.
1866
1879
.
26.
Duan
,
M.
,
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2015
, “
Tracking Control of Non-Minimum Phase Systems Using Filtered Basis Functions: A NURBS-Based Approach
,”
ASME
Paper No. DSCC2015-9859.
27.
Frueh
,
J. A.
, and
Phan
,
M. Q.
,
2000
, “
Linear Quadratic Optimal Learning Control (LQL)
,”
Int. J. Control
,
73
(
10
), pp.
832
839
.
28.
Lunenburg
,
J.
,
Bosgra
,
O.
, and
Oomen
,
T.
,
2009
, “
Inversion-Based Feedforward Design for Beyond Rigid Body Systems: A Literature Survey
,” DCT Report No. 2009.105, Eindhoven University of Technology, Eindhoven, The Netherlands.
29.
Bay
,
J. S.
,
1999
,
Fundamentals of Linear State Space Systems
,
McGraw-Hill Science, Engineering & Mathematics
,
New York
.
30.
Hoaglin
,
D. C.
, and
Welsch
,
R. E.
,
1978
, “
The Hat Matrix in Regression and ANOVA
,”
Am. Stat.
,
32
(
1
), pp.
17
22
.
31.
Bernstein
,
D. S.
,
2009
,
Matrix Mathematics: Theory, Facts, and Formulas
,
Princeton University Press
,
Princeton, NJ
.
32.
Strang
,
G.
,
1993
, “
The Fundamental Theorem of Linear Algebra
,”
Am. Math. Mon.
,
100
(
9
), pp.
848
855
.
33.
Laub
,
A. J.
,
2005
,
Matrix Analysis for Scientists and Engineers
,
SIAM
,
Philadelphia, PA
.
34.
Zygmund
,
A.
,
1968
,
Trigonometric Series
,
Cambridge University Press
,
New York
.
35.
Johnson
,
L.
, and
Riess
,
R.
,
1982
,
Numerical Analysis
,
Addison-Wesley
,
Reading, MA
.
36.
Ye
,
Y.
, and
Wang
,
D.
,
2005
, “
DCT Basis Function Learning Control
,”
IEEE/ASME Trans. Mechatronics
,
10
(
4
), pp.
449
454
.
37.
Chu
,
B.
, and
Owens
,
D.
,
2013
, “
Singular Value Distribution of Non-Minimum Phase Systems With Application to Iterative Learning Control
,”
52nd IEEE Conference on Decision and Control
,
IEEE
, pp.
6700
6705
.
38.
Ronde
,
M.
, and
van den Bulk
,
J.
,
2013
, “
Feedforward for Flexible Systems With Time-Varying Performance Locations
,”
2013 American Control Conference
, pp.
6033
6038
.
39.
Ronde
,
M.
,
van de Molengraft
,
R.
, and
Steinbuch
,
M.
,
2012
, “
Model-Based Feedforward for Inferential Motion Systems, With Application to a Prototype Lightweight Motion System
,”
American Control Conference (ACC)
,
2012
, pp.
5324
5329
.
40.
Deb
,
A.
,
Sarkar
,
G.
, and
Sen
,
S. K.
,
1994
, “
Block Pulse Functions, the Most Fundamental of all Piecewise Constant Basis Functions
,”
Int. J. Syst. Sci.
,
25
(
2
), pp.
351
363
.
41.
Hamamoto
,
K.
, and
Sugie
,
T.
,
2001
, “
An Iterative Learning Control Algorithm Within Prescribed Input-Output Subspace
,”
Automatica
,
37
(
11
), pp.
1803
1809
.
42.
Gopinath
,
S.
,
Kar
,
I.
, and
Bhatt
,
R.
,
2009
, “
Wavelet Series Based Learning Controller Design for Kinematic Path-Tracking Control of Mobile Robot
,”
International Conference on Advances in Computing, Communication and Control
, pp.
129
135
.
43.
Phan
,
M.
, and
Frueh
,
J.
,
1996
, “
Learning Control for Trajectory Tracking Using Basis Functions
,”
35th IEEE Conference on Decision and Control
, pp.
2490
2492
.
44.
Ahmed
,
N.
,
Natarajan
,
T.
, and
Rao
,
K. R.
,
1974
, “
Discrete Cosine Transform
,”
IEEE Trans. Comput.
,
100
(
1
), pp.
90
93
.
45.
Rao
,
K.
, and
Yip
,
P.
,
1990
,
Discrete Cosine Transform: Algorithms, Advantages, Applications
,
Academic Press Professional
Elsevier, Amsterdam, The Netherlands
.
46.
Jain
,
A. K.
,
1989
,
Fundamentals of Digital Image Processing
,
Prentice-Hall
,
Upper Saddle River, NJ
.
47.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
,
1999
,
Discrete-Time Signal Processing
,
Prentice Hall
,
Upper Saddle River, NJ
.
48.
Couch
,
L. W.
,
2001
,
Digital and Analog Communication Systems
,
Prentice-Hall
,
Upper Saddle River, NJ
.
49.
Bardell
,
P. H.
,
McAnney
,
W. H.
, and
Savir
,
J.
,
1987
,
Built-In Test for VLSI: Pseudorandom Techniques
,
Wiley-Interscience
,
New York
.
50.
Okwudire
,
C.
,
Ramani
,
K.
, and
Duan
,
M.
,
2016
, “
A Trajectory Optimization Method for Improved Tracking of Motion Commands Using CNC Machines That Experience Unwanted Vibration
,”
CIRP Ann. Manuf. Technol.
,
65
(
1
), pp.
373
376
.
51.
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2016
, “
Regularized Filtered Basis Functions Approach for Accurate Tracking of Discrete-Time Linear Time Invariant Systems With Bounded Random Uncertainties
,”
ASME
Paper No. DSCC2016-9885.
You do not currently have access to this content.