This paper provides a generic analysis of the relationship between time- and frequency-domain disturbance observer (DOB) design methodology. It is discovered that the traditional frequency-domain DOBs using a low-pass filter with unity gain can only handle disturbances satisfying matching condition, while the traditional time-domain DOBs always generate an observer with a high-order. A functional disturbance observer (FDOB) is proposed to improve the existing results together with its design guideline, frequency analysis, and existence condition. Compared with the existing frequency-domain DOBs, the proposed FDOB can handle more classes of disturbances, while compared with the existing time-domain DOBs, the proposed FDOB can generate an observer with a lower-order. Numerical examples are presented to illustrate the main findings of this paper including a rotary mechanical system of nonminimum phase.

References

1.
Schrijver
,
E.
, and
Van Dijk
,
J.
,
2002
, “
Disturbance Observers for Rigid Mechanical Systems: Equivalence, Stability, and Design
,”
ASME J. Dyn. Syst., Meas., Control
,
124
(
4
), pp.
539
548
.
2.
Li
,
S.
,
Yang
,
J.
,
Chen
,
W. H.
, and
Chen
,
X.
,
2014
,
Disturbance Observer-Based Control: Methods and Applications
,
CRC Press
,
Boca Raton, FL
.
3.
Guo
,
L.
, and
Cao
,
S.
,
2013
,
Anti-Disturbance Control for Systems With Multiple Disturbances
,
CRC Press
,
Boca Raton, FL
.
4.
Chen
,
W. H.
,
Yang
,
J.
,
Guo
,
L.
, and
Li
,
S.
,
2016
, “
Disturbance Observer-Based Control and Related Methods: An Overview
,”
IEEE Trans. Ind. Electron.
,
63
(
2
), pp.
1083
1095
.
5.
Su
,
J.
,
Li
,
B.
, and
Chen
,
W. H.
,
2015
, “
On Existence, Optimality and Asymptotic Stability of the Kalman Filter With Partially Observed Inputs
,”
Automatica
,
53
, pp.
149
154
.
6.
Chen
,
W. H.
,
Yang
,
J.
, and
Zhao
,
Z.
,
2016
, “
Robust Control of Uncertain Nonlinear Systems: A Nonlinear DOBC Approach
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
7
), p.
071002
.
7.
Chen
,
W. H.
,
Ballance
,
D.
,
Gawthrop
,
P.
, and
O'Reilly
,
J.
,
2000
, “
A Nonlinear Disturbance Observer for Robotic Manipulators
,”
IEEE Trans. Ind. Electron.
,
47
(
4
), pp.
932
938
.
8.
Yang
,
J.
,
Li
,
S.
,
Su
,
J.
, and
Yu
,
X.
,
2013
, “
Continuous Nonsingular Terminal Sliding Mode Control for Systems With Mismatched Disturbances
,”
Automatica
,
49
(
7
), pp.
2287
2291
.
9.
Johnson
,
C.
,
1968
, “
Optimal Control of the Linear Regulator With Constant Disturbances
,”
IEEE Trans. Autom. Control
,
13
(
4
), pp.
416
421
.
10.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.
11.
Su
,
J.
,
Li
,
B.
, and
Chen
,
W. H.
,
2015
, “
Simultaneous State and Input Estimation With Partial Information on the Inputs
,”
Syst. Sci. Control Eng.
,
3
(
1
), pp.
445
452
.
12.
Ohishi
,
K.
,
Nakao
,
M.
,
Ohnishi
,
K.
, and
Miyachi
,
K.
,
1987
, “
Microprocessor-Controlled DC Motor for Load-Insensitive Position Servo System
,”
IEEE Trans. Ind. Electron.
,
34
(
1
), pp.
44
49
.
13.
Shim
,
H.
, and
Jo
,
N.
,
2009
, “
An Almost Necessary and Sufficient Condition for Robust Stability of Closed-Loop Systems With Disturbance Observer
,”
Automatica
,
45
(
1
), pp.
296
299
.
14.
Park
,
G.
,
Joo
,
Y.
, and
Shim
,
H.
,
2014
, “
Asymptotic Rejection of Sinusoidal Disturbances With Recovered Nominal Transient Performance for Uncertain Linear Systems
,”
IEEE Conference on Decision and Control
, pp.
4404
4409
.
15.
Joo
,
Y.
,
Park
,
G.
,
Back
,
J.
, and
Shim
,
H.
,
2016
, “
Embedding Internal Model in Disturbance Observer With Robust Stability
,”
IEEE Trans. Autom. Control
,
PP
(99).
16.
Su
,
J.
,
Yang
,
J.
, and
Li
,
S.
,
2013
, “
Continuous Finite-Time Anti-Disturbance Control for a Class of Uncertain Nonlinear System
,”
Trans. Inst. Meas. Control
,
36
(
3
), pp.
300
311
.
17.
Xiong
,
Y.
, and
Saif
,
M.
,
2003
, “
Unknown Disturbance Inputs Estimation Based on a State Functional Observer Design
,”
Automatica
,
39
(
8
), pp.
1389
1398
.
18.
Kim
,
K.
, and
Rew
,
K.
,
2013
, “
Reduced Order Disturbance Observer for Discrete-Time Linear System
,”
Automatica
,
49
(
4
), pp.
968
975
.
19.
Su
,
J.
,
Li
,
B.
,
Chen
,
W. H.
, and
Yang
,
J.
,
2016
, “
Reduced-Order Disturbance Observer Design for Discrete-Time Linear Stochastic Systems
,”
Trans. Inst. Meas. Control
.
20.
Darouach
,
M.
,
2000
, “
Existence and Design of Functional Observers for Linear Systems
,”
IEEE Trans. Autom. Control
,
45
(
5
), pp.
940
943
.
21.
Yang
,
J.
,
Su
,
J.
,
Li
,
S.
, and
Yu
,
X.
,
2014
, “
High-Order Mismatched Disturbance Compensation for Motion Control Systems Via a Continuous Dynamic Sliding-Mode Approach
,”
IEEE Trans. Ind. Inf.
,
10
(
1
), pp.
604
614
.
22.
Chen
,
W. H.
,
2004
, “
Disturbance Observer Based Control for Nonlinear Systems
,”
IEEE/ASME Trans. Mechatronics
,
9
(
4
), pp.
706
710
.
23.
Su
,
J.
,
Chen
,
W. H.
, and
Li
,
B.
,
2015
, “
High Order Disturbance Observer Design for Linear and Nonlinear Systems
,”
International Conference on Information and Automation
, pp.
1893
1898
.
24.
Miklosovic
,
R.
,
Radke
,
A.
, and
Gao
,
Z.
,
2006
, “
Discrete Implementation and Generalization of the Extended State Observer
,”
American Control Conference
, pp.
2209
2214
.
25.
Jiang
,
G.
,
Wang
,
S.
, and
Song
,
W.
,
2000
, “
Design of Observer With Integrators for Linear Systems With Unknown Input Disturbances
,”
Electron. Lett.
,
36
(
13
), pp.
1168
1169
.
26.
Huang
,
Y.
, and
Xue
,
W.
,
2014
, “
Active Disturbance Rejection Control: Methodology and Theoretical Analysis
,”
ISA Trans.
,
53
(
4
), pp.
963
976
.
27.
Wang
,
L.
,
Freeman
,
C.
,
Rogers
,
E.
, and
Owens
,
D.
,
2010
, “
Experimentally Validated Continuous-Time Repetitive Control of Non-Minimum Phase Plants With a Prescribed Degree of Stability
,”
Control Eng. Pract.
,
18
(
10
), pp.
1158
1165
.
28.
Su
,
J.
, and
Chen
,
W. H.
,
2016
, “
Fault Diagnosis for Vehicle Lateral Dynamics With Robust Threshold
,”
IEEE International Conference on Industrial Technology (online
)
.
You do not currently have access to this content.