This paper proposes a consensus state estimator for sensor networks of distributed parameter structures. A thin beam with clamped–clamped boundary conditions enhanced by piezoelectric sensors is considered, and individual observers are assigned for each of these sensors. The so-called estimation agents are then connected to one another in a network with certain directed topology, and consensus is enforced between the agents estimated output in observers dynamics. Observer gains are optimized using algebraic Riccati equations (AREs), and robustness to measurement disturbances is applied via H design. The consensus state estimator is then numerically investigated for a sensor network of five agents. According to the results of the optimal and robust designs, the proposed consensus observer successfully estimates the modal system states in finite time, whereas the estimation output is resilient to measurement disturbances. Implementation of the consensus sensor network increases the robustness of the estimation, due to its inherent redundancy.

References

References
1.
Omidi
,
E.
,
Korayem
,
A. H.
, and
Korayem
,
M. H.
,
2013
, “
Sensitivity Analysis of Nanoparticles Pushing Manipulation by AFM in a Robust Controlled Process
,”
Precis. Eng.
,
37
(
3
) pp.
658
670
.
2.
Van Auken
,
R. M.
,
2015
, “
Development and Comparison of Laplace Domain Models for Nonslender Beams and Application to a Half-Car Model With Flexible Body
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
7
), p.
071001
.
3.
Omidi
,
E.
, and
Mahmoodi
,
S. N.
,
2015
, “
Multimode Modified Positive Position Feedback to Control a Collocated Structure
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
5
), p.
051003
.
4.
Pedersen
,
H. C.
,
Andersen
,
T. O.
, and
Nielsen
,
B. K.
,
2015
, “
Comparison of Methods for Modeling a Hydraulic Loader Crane With Flexible Translational Links
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
10
), p.
101012
.
5.
Omidi
,
E.
, and
Mahmoodi
,
S. N.
,
2015
, “
Nonlinear Vibration Suppression of Flexible Structures Using Nonlinear Modified Positive Position Feedback Approach
,”
Nonlinear Dyn.
,
79
(
2
), pp.
835
849
.
6.
Omidi
,
E.
, and
Mahmoodi
,
S. N.
,
2015
, “
Sensitivity Analysis of the Nonlinear Integral Positive Position Feedback and Integral Resonant Controllers on Vibration Suppression of Nonlinear Oscillatory Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
149
166
.
7.
Samiei
,
E.
,
Butcher
,
E. A.
, and
Sanyal
,
A. K.
,
2015
, “
Attitude Stabilization of Rigid Spacecraft With Minimal Attitude Coordinates and Unknown Time-Varying Delay
,”
Aerosp. Sci. Technol.
,
46
, pp.
412
421
.
8.
Omidi
,
E.
, and
Mahmoodi
,
S. N.
,
2015
, “
Hybrid Positive Feedback Control for Active Vibration Attenuation of Flexible Structures
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1790
1797
.
9.
Omidi
,
E.
, and
Mahmoodi
,
S. N.
,
2014
, “
Vibration Control of Collocated Smart Structures Using ℋ∞ Modified Positive Position and Velocity Feedback
,”
J. Vib. Control
(published online).
10.
Seigler
,
T.
, and
Ghasemi
,
A.
,
2012
, “
Specified Motion of Piezoelectrically Actuated Structures
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021002
.
11.
Alessandroni
,
S.
,
Andreaus
,
U.
, and
Dell'Isola
,
F.
,
2004
, “
Piezo-ElectroMechanical (PEM) Kirchhoff–Love Plates
,”
Eur. J. Mech., A/Solids
,
23
(
4
) pp.
689
702
.
12.
Porfiri
,
M.
,
Dell'Isola
,
F.
, and
Mascioli
,
F. M. F.
,
2004
, “
Circuit Analog of a Beam and Its Application to Multimodal Vibration Damping, Using Piezoelectric Transducers
,”
Int. J. Circuit Theory Appl.
,
32
(
4
) pp.
167
198
.
13.
Noshadi
,
A.
,
Shi
,
J.
, and
Lee
,
W. S.
, “
Robust Control of an Active Magnetic Bearing System Using H∞ and Disturbance Observer-Based Control
,”
J. Vib. Control
(published online).
14.
Hidayat
,
Z.
,
Babuska
,
R.
, and
De Schutter
,
B.
,
2011
, “
Observers for Linear Distributed-Parameter Systems: A Survey
,”
IEEE
International Symposium on Robotic and Sensors Environments
, Montreal, Canada, Sept. 17–18, pp.
166
171
.
15.
Schaum
,
A.
,
Moreno
,
J. A.
, and
Fridman
,
E.
,
2014
, “
Matrix Inequality-Based Observer Design for a Class of Distributed Transport-Reaction Systems
,”
Int. J. Robust Nonlinear Control
,
24
(
16
), pp.
2213
2230
.
16.
Patan
,
M.
,
2012
,
Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems
,
Springer
, Berlin.
17.
Olfati-Saber
,
R.
, and
Murray
,
R. M.
,
2004
, “
Consensus Problems in Networks of Agents With Switching Topology and Time-Delays
,”
IEEE Trans. Autom. Control
,
49
(
9
), pp.
1520
1533
.
18.
Olfati Saber
,
R.
, and
Murray
,
R. M.
,
2003
, “
Consensus Protocols for Networks of Dynamic Agents
,”
American Control Conference
, Denver, CO, Vol. 2, pp.
951
956
.
19.
Demetriou
,
M. A.
,
2009
, “
Natural Consensus Filters for Second Order Infinite Dimensional Systems
,”
Syst. Control Lett.
,
58
(
12
), pp.
826
833
.
20.
Li
,
Z.
,
Duan
,
Z.
, and
Chen
,
G.
,
2010
, “
Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint
,”
IEEE Trans. Circuits Syst. I
,
57
(
1
), pp.
213
224
.
21.
Demetriou
,
M. A.
,
2010
, “
Guidance of Mobile Actuator-Plus-Sensor Networks for Improved Control and Estimation of Distributed Parameter Systems
,”
IEEE Trans. Autom. Control
,
55
(
7
), pp.
1570
1584
.
22.
Spinello
,
D.
, and
Stilwell
,
D. J.
,
2014
, “
Distributed Full-State Observers With Limited Communication and Application to Cooperative Target Localization
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
3
), p.
031022
.
23.
Mehrabian
,
A.
, and
Khorasani
,
K.
,
2015
, “
Cooperative Optimal Synchronization of Networked Uncertain Nonlinear Euler–Lagrange Heterogeneous Multi-Agent Systems With Switching Topologies
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
4
), p.
041006
.
24.
Dong
,
Y.
, and
Huang
,
J.
,
2014
, “
Cooperative Global Robust Output Regulation for Nonlinear Multi-Agent Systems in Output Feedback Form
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
3
), p.
031001
.
25.
Rastgoftar
,
H.
, and
Jayasuriya
,
S.
,
2015
, “
Swarm Motion as Particles of a Continuum With Communication Delays
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
11
), p.
111008
.
26.
Omidi
,
E.
, and
Mahmoodi
,
S. N.
,
2015
, “
Multiple Mode Spatial Vibration Reduction in Flexible Beams Using H2- and H∞-Modified Positive Position Feedback
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011004
.
27.
Han
,
S. M.
,
Benaroya
,
H.
, and
Wei
,
T.
,
1999
, “
Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
,”
J. Sound Vib.
,
225
(
5
) pp.
935
988
.
28.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
Wiley
, Hoboken, NJ.
29.
Howard
,
C. Q.
,
2007
, “
Modal Mass of Clamped Beams and Clamped Plates
,”
J. Sound Vib.
,
301
(
1–2
), pp.
410
414
.
30.
Hwu
,
C.
,
Chang
,
W. C.
, and
Gai
,
H. S.
,
2004
, “
Vibration Suppression of Composite Sandwich Beams
,”
J. Sound Vib.
,
272
(
1–2
), pp.
1
20
.
31.
Ren
,
W.
, and
Beard
,
R. W.
,
2005
, “
Consensus Seeking in Multiagent Systems Under Dynamically Changing Interaction Topologies
,”
IEEE Trans. Autom. Control
,
50
(
5
), pp.
655
661
.
32.
Liu
,
Y.
,
Jia
,
Y.
, and
Du
,
J.
,
2009
, “
Dynamic Output Feedback Control for Consensus of Multi-Agent Systems: An H∞ Approach
,”
American Control Conference
, St. Louis, MO, June 10–12, pp.
4470
4475
.
33.
Lewis
,
F.
,
Zhang
,
H.
, and
Hengster-Movric
,
K.
,
2014
,
Cooperative Control of Multi-Agent Systems
,
Springer-Verlag
, London.
34.
Lewis
,
F. L.
,
Vrabie
,
D.
, and
Syrmos
,
V. L.
,
2012
,
Optimal Control
,
Wiley
, New York.
35.
Zhang
,
H.
,
Lewis
,
F. L.
, and
Das
,
A.
,
2011
, “
Optimal Design for Synchronization of Cooperative Systems: State Feedback, Observer and Output Feedback
,”
IEEE Trans. Autom. Control
,
56
(
8
) pp.
1948
1952
.
36.
Jin
,
Z.
, and
Murray
,
R. M.
,
2004
, “
Double-Graph Control Strategy of Multi-Vehicle Formations
,”
IEEE Conference on Decision and Control
(
CDC
), Nassau, Bahamas, Dec. 14–17, Vol.
2
, pp.
1988
1994
.
37.
Li
,
H.
, and
Fu
,
M.
,
1997
, “
A Linear Matrix Inequality Approach to Robust H∞ Filtering
,”
IEEE Trans. Signal Process.
,
45
(
9
), pp.
2338
2350
.
You do not currently have access to this content.