A long-term gas-path fault diagnosis and its rapid prototype system are presented for on-line monitoring of a gas turbine engine. Toward this end, a nonlinear hybrid model-based performance estimation and abnormal detection method are proposed in this paper. An adaptive extended Kalman particle filter (AEKPF) estimator is developed and used to real time estimate engine health parameters, which depict gas turbine performance degradation condition. The health parameter estimators are then pushed into a buffer memory and for periodical renewing baseline model (BM) performance, and the BM is utilized to detect engine anomaly over its life course. The threshold in abnormal detection schemes is adapted to the modeling errors during the engine lifetime. The rapid prototyping system is designed and built up based on the National Instrument (NI) CompactRIO (CRIO) for evaluating gas turbine engine performance estimation and anomaly detection. A number of experiments are carried out to demonstrate the advantages of the proposed abnormal detection scheme and effectiveness of the designed rapid prototype system to the problem of gas turbine life cycle anomaly detection.

References

References
1.
Mu
,
J. X.
,
Rees
,
D.
, and
Liu
,
G. P.
,
2005
, “
Advanced Controller Design for Aircraft Gas Turbine Engines
,”
Control Eng. Pract.
,
13
(
8
), pp.
1001
1015
.
2.
Bathaie
,
S. S. T.
,
Vanini
,
Z. N. S.
, and
Khorasani
,
K.
,
2014
, “
Dynamic Neural Network-Based Fault Diagnosis of Gas Turbine Engines
,”
Neurocomputing
,
125
(
2
), pp.
153
165
.
3.
Svard
,
C.
,
Nyberg
,
M.
,
Frisk
,
E.
, and
Krysander
,
M.
,
2013
, “
Automotive Engine FDI by Application of an Automated Model-Based and Data-Driven Design Methodology
,”
Control Eng. Pract.
,
21
(
4
), pp.
455
472
.
4.
Ogaji
,
S. O. T.
,
Marinai
,
L.
,
Sampath
,
S.
,
Singh
,
R.
, and
Probert
,
S. D.
,
2005
, “
Gas-Turbine Fault Diagnostics: A Fuzzy-Logic Approach
,”
Appl. Energy
,
82
(
1
), pp.
81
89
.
5.
Zhernakov
,
S. V.
,
2000
, “
Diagnostics and Checking of Gas Turbine Engines Parameters With Hybrid Expert Systems
,” Workshop on Computer Science and Information Technologies (CSIT), Ufa, Russia, pp.
227
234
.
6.
Xu
,
Y.
,
Ye
,
L. L.
, and
Zhu
,
Q. X.
,
2015
, “
A New DROS-Extreme Learning Machine With Differential Vector-KPCA Approach for Real-Time Fault Recognition of Nonlinear Processes
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
5
), p.
051011
.
7.
Randal
,
R.
,
Daniel
,
E. V.
, and
Aditya
,
K.
,
2004
, “
Towards In-Flight Detection and Accommodation of Faults in Aircraft Engines
,”
AIAA
Paper No. 2004-6463.
8.
Romessis
,
C.
, and
Mathioudakis
,
K.
,
2006
, “
Bayesian Network Approach for Gas Path Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
64
72
.
9.
Vanini
,
Z. N. S.
,
Khorasani
,
K.
, and
Meskin
,
N.
,
2004
, “
Fault Detection and Isolation of a Dual Spool Gas Turbine Engine Using Dynamic Neural Networks and Multiple Model Approach
,”
Inf. Sci.
,
259
, pp.
234
251
.
10.
Aretakis
,
N.
,
Mathioudakis
,
K.
, and
Stamatis
,
A.
,
2004
, “
Identification of Sensor Faults on Turbofan Engines Using Pattern Recognition Techniques
,”
Control Eng. Pract.
,
12
(
7
), pp.
827
836
.
11.
Salahshoor
,
K.
,
Kordestani
,
M.
, and
Khoshro
,
M. S.
,
2010
, “
Fault Detection and Diagnosis of an Industrial Steam Turbine Using Fusion of SVM (Support Vector Machine) and ANFIS (Adaptive Neuro-Fuzzy Inference System) Classifiers
,”
Energy
,
35
(
12
), pp.
5472
5482
.
12.
Armstrong
,
J. B.
, and
Simon
,
D. L.
,
2012
, “
Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture
,” Report No. NASA/TM-2012-217279.
13.
Luppold
,
R. H.
,
Roman
,
J. R.
,
Gallops
,
G. W.
, and
Keer
,
L. J.
,
1989
, “
Estimating In-Flight Engine Performance Variations Using Kalman Filter Concepts
,”
AIAA
Paper No. 89-2584.
14.
Kerr
,
J. L.
,
Nemec
,
T. S.
, and
Gallops
,
G. W.
,
1992
, “
Real-Time Estimation of Gas Turbine Engine Damage Using a Control-Based Kalman Filter Algorithm
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
187
195
.
15.
Brotherton
,
T.
,
Volponi
,
A.
,
Luppold
,
R.
, and
Simon
,
D. L.
,
2003
, “
eSTORM: Enhanced Self-Tuning On-Board Real-Time Engine Model
,”
IEEE
Aerospace Conference
, Big Sky, MT.
16.
Volponi
,
A.
,
2008
, “
Enhanced Self Tuning On-Board Real-Time Model (eSTORM) for Aircraft Engine Performance Health Tracking
,” Report No. NASA/CR-2008-215272.
17.
Simon
,
D.
, and
Simon
,
D. L.
,
2006
, “
Constrained Kalman Filtering Via Density Function Truncation for Turbofan Engine Health Estimation
,” Report No. NASA/TM-2006-214129.
18.
Litt
,
J. S.
, and
Simon
,
D. L.
,
2007
, “
Toward a Real-Time Measurement-Based System for Estimation of Helicopter Engine Degradation Due to Compressor Erosion
,” Report No. NASA/TM-2007-214843.
19.
Simon
,
D. L.
,
Armstrong
,
J. B.
, and
Garg
,
S.
,
2012
, “
Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models
,” Report No.
NASA/TM-2012-217278
.
20.
Gordon
,
N.
,
Salmond
,
D.
, and
Smith
,
A.
,
1993
, “
Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation.
,”
IEE
Proc. F, Vol.
140
, pp.
107
113
.
21.
Doucet
,
A.
, and
Godsill
,
S.
,
1998
, “
On Sequential Simulation-Based Methods for Bayesian Filtering
,” Department of Engineering, Cambridge University, Cambridge, UK, Technical Report No. CUED/F-INFENG/TR.310.
22.
Alrowaie
,
F.
,
Gopaluni
,
R. B.
, and
Kwok
,
K. E.
,
2012
, “
Fault Detection and Isolation in Stochastic Non-Linear State-Space Models Using Particle Filters
,”
Control Eng. Pract.
,
20
(
10
), pp.
1016
1032
.
23.
Simon
,
D. A.
,
2008
, “
Comparison of Filtering Approaches for Aircraft Engine Health Estimation
,”
Aerosp. Sci. Technol.
,
12
(
4
), pp.
276
284
.
24.
Kobayashi
,
T.
, and
Simon
,
D. L.
,
2006
, “
Hybrid Kalman Filter: A New Approach for Aircraft Engine In-Flight Diagnostics
,” Report No. NASA/TM-2006-214491.
25.
Lu
,
F.
,
Chen
,
Y.
,
Huang
,
J. Q.
,
Zhang
,
D. D.
, and
Liu
,
N.
,
2014
, “
An Integrated Nonlinear Model-Based Approach to Gas Turbine Engine Sensor Fault Diagnostics
,”
Proc. Inst. Mech. Eng., Part G
,
288
(
11
), pp.
2007
2021
.
26.
Henriksson
,
M.
,
Gronstedt
,
T.
, and
Breitholtz
,
C.
,
2011
, “
Model-Based On-Board Turbofan Thrust Estimation
,”
Control Eng. Pract.
,
19
(
6
), pp.
602
610
.
27.
Chacartegui
,
R.
,
Sanchez
,
D.
,
Munoz
,
A.
, and
Sanchez
,
T.
,
2011
, “
Real Time Simulation of Medium Size Gas Turbines
,”
Energy Convers. Manage.
,
52
(
1
), pp.
713
724
.
28.
Sun
,
J. G.
,
Vasilyev
,
V.
, and
Ilyasov
,
B.
,
2005
,
Advanced Multivariable Control Systems of Aeroengines
,
Beihang University Press
,
Beijing
.
29.
Zhou
,
W. X.
,
2006
, “
Research on Object-Oriented Modeling and Simulation for Aeroengine and Control System
,” Ph.D. thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
30.
Lu
,
F.
,
Huang
,
J. Q.
, and
Lv
,
Y. Q.
,
2013
, “
Gas Path Health Monitoring for a Turbofan Engine Based on Nonlinear Filtering Approach
,”
Energies
,
6
(
1
), pp.
492
513
.
31.
Sun
,
J. Z.
,
Zuo
,
H. F.
,
Wang
,
W. B.
, and
Pecht
,
M. G.
,
2012
, “
Application of a State Space Modeling Technique to System Prognostics Based on a Health Index for Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
28
, pp.
585
596
.
32.
Simani
,
S.
, and
Patton
,
R. J.
,
2008
, “
Fault Diagnosis of an Industrial Gas Turbine Prototype Using a System Identification Approach
,”
Control Eng. Pract.
,
16
(
7
), pp.
769
786
.
You do not currently have access to this content.