This paper presents a unified control framework for both set-point and time-varying force control of robot manipulator by introducing an improved position-based impedance control (IPBIC). In order to essentially achieve accurate force control, especially time-varying force tracking, a new target impedance function compensated by a force controller is presented. The essence of the improved method in realizing time-varying force tracking, as well as the coupled stability of the manipulator–environment system is investigated. To further improve the force control performance, the Newton-type iterative learning control (ILC) is introduced upon the closed-loop system. A case study on a two-link robot model demonstrates the effectiveness of this method.

References

References
1.
Freeman
,
C. T.
,
Rogers
,
E.
,
Hughes
,
A.
,
Burridge
,
J.
, and
Meadmore
,
K. L.
,
2012
, “
Iterative Learning Control in Health Care: Electrical Stimulation and Robotic Assisted Upper-Limb Stroke Rehabilitation
,”
IEEE Control Syst. Mag.
,
32
(
1
), pp.
18
53
.
2.
Várkuti
,
B.
,
Guan
,
C.
,
Pan
,
Y.
,
Phua
,
K.
,
Ang
,
K.
,
Kuah
,
C.
,
Chua
,
K.
,
Ang
,
B.
,
Birbaumer
,
N.
, and
Sitaram
,
R.
,
2013
, “
Resting State Changes in Functional Connectivity Correlate With Movement Recovery for BCI and Robot-Assisted Upper-Extremity Training After Stroke
,”
Neurorehabilitation Neural Repair
,
27
(
1
), pp.
53
62
.
3.
Krebs
,
H. I.
,
Conroy
,
S. S.
,
Bever
,
C.
, and
Hogan
,
N.
,
2012
, “
Forging Mens et Manus: The MIT Experience in Upper Extremity Robotic Therapy
,”
Neurorehabilitation Technology
,
Springer
,
London
, pp.
125
140
.
4.
Huang
,
H. B.
,
Sun
,
D.
,
Su
,
H.
, and
Mills
,
J. K.
,
2012
, “
Force Sensing and Control in Robot-Assisted Suspended Cell Injection System
,”
Advances in Robotics and Virtual Reality
, Vol.
26
,
Springer
,
Berlin
, pp.
61
68
.
5.
Huang
,
H. B.
,
Sun
,
D.
,
Mills
,
J.
, and
Chang
,
S. H.
,
2009
, “
Robotic Cell Injection System With Position and Force Control: Toward Automatic Batch Biomanipulation
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
727
737
.
6.
Raibert
,
M.
, and
Craig
,
J. J.
,
1981
, “
Hybrid Position/Force Control of Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
102
(
2
), pp.
126
133
.
7.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part I—Theory
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
1
7
.
8.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part II—Implementation
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
8
16
.
9.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part III—Applications
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
17
24
.
10.
Lawrence
,
D. A.
,
1988
, “
Impedance Control Stability Properties in Common Implementations
,”
IEEE
International Conference on Robotics and Automation
, Philadelphia, PA, Apr. 24–29, pp.
1185
1190
.
11.
Lee
,
S.
, and
Lee
,
H. S.
,
1991
, “
Intelligent Control of Manipulators Interacting With an Uncertain Environment Based on Generalized Impedance
,”
IEEE
Symposium on Intelligent Control
, Arlington, VA, Aug. 13–15, pp.
61
66
.
12.
Jung
,
S.
, and
Hsia
,
T. C.
,
2000
, “
Robust Neural Force Control Scheme Under Uncertainties in Robot Dynamics and Unknown Environment
,”
IEEE Trans. Ind. Electron.
,
47
(
2
), pp.
403
412
.
13.
Bigras
,
P.
,
Lambert
,
M.
, and
Perron
,
C.
,
2012
, “
Robust Force Controller for Industrial Robots: Optimal Design and Real-Time Implementation on a Kuka Robot
,”
IEEE Trans. Control Syst. Technol.
,
20
(
2
), pp.
473
479
.
14.
Doulgeri
,
Z.
, and
Iliadis
,
G.
,
2007
, “
Stability of a Contact Task for a Robotic Arm Modelled as a Switched System
,”
IET Control Theory Appl.
,
1
(
3
), pp.
844
853
.
15.
Goldenberg
,
A. A.
,
1988
, “
Implementation of Force and Impedance Control in Robot Manipulators
,”
IEEE
International Conference on Robotics and Automation
, Philadelphia, PA, Aug. 24–29, pp.
1626
1632
.
16.
Seraji
,
H.
, and
Colbaugh
,
R.
,
1997
, “
Force Tracking in Impedance Control
,”
Int. J. Rob. Res.
,
16
(
1
), pp.
97
117
.
17.
Jung
,
S.
,
Hsia
,
T.
, and
Bonitz
,
R. G.
,
2004
, “
Force Tracking Impedance Control of Robot Manipulators Under Unknown Environment
,”
IEEE Trans. Control Syst. Technol.
,
12
(
3
), pp.
474
483
.
18.
Zeng
,
G.
, and
Hemami
,
A.
,
1997
, “
An Overview of Robot Force Control
,”
Robotica
,
15
(
5
), pp.
473
482
.
19.
Song
,
G.
, and
Cai
,
L.
,
1998
, “
Robust Position/Force Control of Robot Manipulators During Constrained Tasks
,”
IEE Proc.-Control Theory Appl.
,
145
(
4
), pp.
427
433
.
20.
Krebs
,
H. I.
,
Palazzolo
,
J. J.
,
Dipietro
,
L.
,
Volpe
,
B.
, and
Hogan
,
N.
,
2003
, “
Rehabilitation Robotics: Performance-Based Progressive Robot-Assisted Therapy
,”
Auton. Rob.
,
145
, pp.
7
20
.
21.
Freeman
,
C. T.
,
Hughes
,
A. M.
,
Burridge
,
J.
,
Chappell
,
P.
,
Lewin
,
P.
, and
Rogers
,
E.
,
2009
, “
Iterative Learning Control of FES Applied to the Upper Extremity for Rehabilitation
,”
Control Eng. Pract.
,
17
(
3
), pp.
368
381
.
22.
Seraji
,
H.
,
1994
, “
Adaptive Admittance Control: An Approach to Explicit Force Control in Compliant Motion
,”
IEEE
International Conference on Robotics and Automation
, San Diego, CA, May 8–13, pp.
2705
2712
.
23.
Xie
,
Y.
,
Sun
,
D.
,
Liu
,
C.
,
Tse
,
H.
, and
Cheng
,
S. H.
,
2000
, “
A Force Control Approach to a Robot-Assisted Cell Microinjection System
,”
Int. J. Rob. Res.
,
29
(
9
), pp.
1222
1232
.
24.
Xie
,
Y.
,
Sun
,
D.
,
Liu
,
C.
, and
Cheng
,
S. H.
,
2008
, “
An Adaptive Impedance Force Control Approach for Robotic Cell Microinjection
,”
IEEE
International Conference on Intelligent Robots and Systems
, Nice, France, Sept. 22–26, pp.
907
912
.
25.
Xu
,
W. K.
,
Cai
,
C. X.
,
Yin
,
M.
, and
Zou
,
Y.
,
2012
, “
Time-Varying Force Tracking in Impedance Control
,”
IEEE
International Conference on Decision and Control
, Maui, HI, Dec. 10–13, pp.
344
349
.
26.
Valency
,
T.
, and
Zacksenhouse
,
M.
,
2003
, “
Accuracy/Robustness Dilemma in Impedance Control
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
3
), pp.
310
319
.
27.
Chiaverini
,
S.
,
Siciliano
,
B.
, and
Villani
,
L.
,
1999
, “
A Survey of Robot Interaction Control Schemes With Experimental Comparison
,”
IEEE/ASME Trans. Mechatron.
,
4
(
3
), pp.
273
285
.
28.
Jung
,
S.
, and
Hsia
,
T. C.
,
1998
, “
Neural Network Impedance Force Control of Robot Manipulator
,”
IEEE Trans. Ind. Electron.
,
45
(
3
), pp.
451
461
.
29.
Hogen
,
N
.,
1987
, “
Stable Execution of Contact Tasks Using Impedance Control
,”
IEEE
International Conference on Robotics and Automation
, Vol.
4
, pp.
1047
1054
.
30.
Kurfess
,
T. R.
,
2005
,
Robotics and Automation Handbook
,
CRC Press
,
Boca Raton, London, New York, Washington, DC
.
31.
Xu
,
W. K.
,
Cai
,
C.
, and
Zou
,
Y.
,
2012
, “
Pd-Based Trajectory Tracking Control in Automatic Cell Injection System
,”
J. Control Theory Appl.
,
11
(
2
), pp.
207
214
.
32.
Son
,
T. D.
,
Ahn
,
H.
, and
Moore
,
K. L.
,
2013
, “
Iterative Learning Control in Optimal Tracking Problems With Specified Data Points
,”
Automatica
,
49
(
5
), pp.
1465
1472
.
33.
Owens
,
D. H.
,
Freeman
,
C.
, and
Van Dinh
,
T.
,
2013
, “
Norm-Optimal Iterative Learning Control With Intermediate Point Weighting: Theory, Algorithms, and Experimental Evaluation
,”
IEEE Trans. Control Syst. Technol.
,
21
(
3
), pp.
999
1007
.
34.
Li
,
J. S.
, and
Li
,
J. M.
,
2013
, “
Adaptive Iterative Learning Control for Consensus of Multi-Agent Systems
,”
IET Control Theory Appl.
,
7
(
1
), pp.
136
142
.
35.
Xu
,
W. K.
,
Chu
,
B.
, and
Rogers
,
E.
,
2014
, “
Iterative Learning Control for Robotic-Assisted Upper Limb Stroke Rehabilitation in the Presence of Muscle Fatigue
,”
Control Eng. Pract.
,
31
, pp.
63
72
.
36.
Lin
,
T.
,
Owens
,
D.
, and
Hätönen
,
J.
,
2006
, “
Newton-Based Iterative Learning Control for Discrete Nonlinear Systems
,”
Int. J. Control
,
79
(
10
), pp.
1263
1276
.
37.
Lewis
,
F. L.
,
Liu
,
K.
, and
Yesildirek
,
A.
,
1995
, “
Neural Net Robot Controller With Guaranteed Tracking Performance
,”
IEEE Trans. Neural Networks
,
6
(
3
), pp.
703
715
.
You do not currently have access to this content.