This work combines the kinematics estimate of human standing with a hybrid identification algorithm to identify a set of ankle dynamics mechanical parameters. We used the hold and release (H&R) experimental paradigm to model a set of recoverable falls on a population of unimpaired adults. Body kinematics was acquired with a microsoft kinect (mk) version 2 after benchmarking its position accuracy to a camera-based vision system (CVS). The system identification algorithm, combining an extended Kalman filter (EKF) and a genetic algorithm (GA), allowed to identify the effect of tendon and muscle stiffness at the ankle joint, separately. This work highlights that, when associated to soft-computing techniques, affordable tracking devices developed for the gaming industry can be used for the reliable assessment of neuromechanical parameters in clinical settings.

References

References
1.
Noiumkar
,
S.
, and
Tirakoat
,
S.
,
2013
, “
Use of Optical Motion Capture in Sports Science: A Case Study of Golf Swing
,”
2013 International Conference on Informatics and Creative Multimedia
(
ICICM
), Kuala Lumpur, Malaysia, Sept. 4–6, pp.
310
313
.
2.
Corazza
,
S.
,
Mndermann
,
L.
,
Gambaretto
,
E.
,
Ferrigno
,
G.
, and
Andriacchi
,
T.
,
2010
, “
Markerless Motion Capture Through Visual Hull, Articulated ICP and Subject Specific Model Generation
,”
Int. J. Comput. Vision
,
87
(
1–2
), pp.
156
169
.
3.
Zhou
,
H.
, and
Hu
,
H.
,
2008
, “
Human Motion Tracking for Rehabilitation Survey
,”
Biomed. Signal Process. Control
,
3
(
1
), pp.
1
18
.
4.
Sooklal
,
S.
,
Mohan
,
P.
, and
Teelucksingh
,
S.
,
2014
, “
Using the Kinect for Detecting Tremors: Challenges and Opportunities
,”
IEEE-EMBS International Conference on Biomedical and Health Informatics
(
BHI
), Valencia, Spain, June 1–4, pp.
768
771
.
5.
Huber
,
M.
,
Seitz
,
A.
,
Leeser
,
M.
, and
Sternad
,
D.
,
2014
, “
Validity and Reliability of Kinect for Measuring Shoulder Joint Angles
,”
40th Annual Northeast Bioengineering Conference
(
NEBEC
), Boston, MA, Apr. 25–27.
6.
Calderita
,
L. V.
,
Bandera
,
J. P.
,
Bustos
,
P.
, and
Skiadopoulos
,
A.
,
2013
, “
Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture Applications
,”
Sensors
,
13
(
7
), p.
8835
.
7.
Rosado
,
J.
,
Silva
,
F.
,
Santos
,
V.
, and
Lu
,
Z.
,
2013
, “
Reproduction of Human Arm Movements Using Kinect Based Motion Capture Data
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
, pp.
885
890
.
8.
Fernández-Baena
,
A.
,
Susin
,
A.
, and
Lligadas
,
X.
,
2012
, “
Biomechanical Validation of Upper-Body and Lower-Body Joint Movements of Kinect Motion Capture Data for Rehabilitation Treatments
,”
4th International Conference on Intelligent Networking and Collaborative Systems
(
INCoS
), Bucharest, Hungary, Sept. 19–21, pp.
656
661
.
9.
El-Laithy
,
R. A.
,
Huang
,
J.
, and
Yeh
,
M.
,
2012
, “
Study on the Use of Microsoft Kinect for Robotics Applications
,”
2012 IEEE/ION Position Location and Navigation Symposium
(
PLANS
), Myrtle Beach, SC, Apr. 23–26, pp.
1280
1288
.
10.
Butkiewicz
,
T.
,
2014
, “
Low-Cost Coastal Mapping Using Kinect v2 Time-of-Flight Cameras
,”
IEEE
,
Oceans-St. John's
, Newfoundland, Sept. 14–19.
11.
Mentiplay
,
B. F.
,
Clark
,
R. A.
,
Mullins
,
A.
,
Bryant
,
A. L.
,
Bartold
,
S.
, and
Paterson
,
K.
,
2013
, “
Reliability and Validity of the Microsoft Kinect for Evaluating Static Foot Posture
,”
J. Foot Ankle Res.
,
6
(
1
), p.
14
.
12.
Clark
,
R. A.
,
Pua
,
Y.-H.
,
Fortin
,
K.
,
Ritchie
,
C.
,
Webster
,
K. E.
,
Denehy
,
L.
, and
Bryant
,
A. L.
,
2012
, “
Validity of the Microsoft Kinect for Assessment of Postural Control
,”
Gait Posture
,
36
(
3
), pp.
372
377
.
13.
Clark
,
R. A.
,
Pua
,
Y.-H.
,
Bryant
,
A. L.
, and
Hunt
,
M. A.
,
2013
, “
Validity of the Microsoft Kinect for Providing Lateral Trunk Lean Feedback During Gait Retraining
,”
Gait Posture
,
38
(
4
), pp.
1064
1066
.
14.
Gritsenko
,
V.
,
Dailey
,
E.
,
Kyle
,
N.
,
Taylor
,
M.
,
Whittacre
,
S.
, and
Swisher
,
A. K.
,
2015
, “
Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation After Breast Cancer Surgery
,”
PLoS One
,
10
(
6
), p.
e0128809
.
15.
Menz
,
H. B.
,
Morris
,
M. E.
, and
Lord
,
S. R.
,
2005
, “
Foot and Ankle Characteristics Associated With Impaired Balance and Functional Ability in Older People
,”
J. Gerontol., Ser. A
,
60
(
12
), pp.
1546
1552
.
16.
Casadio
,
M.
,
Morasso
,
P. G.
, and
Sanguineti
,
V.
,
2005
, “
Direct Measurement of Ankle Stiffness During Quiet Standing: Implications for Control Modelling and Clinical Application
,”
Gait Posture
,
21
(
4
), pp.
410
424
.
17.
Bortolami
,
S.
,
DiZio
,
P.
,
Rabin
,
E.
, and
Lackner
,
J.
,
2003
, “
Analysis of Human Postural Responses to Recoverable Falls
,”
Exp. Brain Res.
,
151
(
3
), pp.
387
404
.
18.
Chavez-Romero
,
R.
,
Cardenas
,
A.
,
Rendon-Mancha
,
J. M.
,
Vernaza
,
K. M.
, and
Piovesan
,
D.
,
2015
, “
Inexpensive Vision-Based System for the Direct Measurement of Ankle Stiffness During Quiet Standing
,”
ASME J. Med. Devices
,
9
(
4
), p.
041011
.
19.
Romero
,
R. C.
,
Cardenas
,
A.
, and
Piovesan
,
D.
,
2014
, “
Viscoelastic Properties of the Ankle During Quiet Standing Via Raster Images and EKF
,”
IEEE Signal Processing in Medicine and Biology Symposium
(
SPMB
), Philadelphia, PA, Dec. 13.
20.
Coronado
,
E.
,
Chavez
,
R.
,
Maya
,
M.
,
Cardenas
,
A.
, and
Piovesan
,
D.
,
2015
, “
Combining Genetic Algorithms and Extended Kalman Filter to Estimate Ankle's Muscle-Tendon Parameters
,”
ASME
Paper No. DSCC2015-9781.
21.
Piovesan
,
D.
,
Kennett
,
C. J.
,
Raul
,
C.
,
Panza
,
M. C.
, and
Cardenas
,
A.
,
2015
, “
Stiffness Boundary Conditions for Critical Damping in Balance Recovery
,”
ASME
Paper No. IMECE2015-50564.
22.
Segura
,
M. E.
,
Coronado
,
E.
,
Cardenas
,
A.
, and
Piovesan
,
D.
,
2015
, “
Time-based Identification of Human Ankle Impedance Via Microsoft Kinect
,” IEEE Signal Processing in Medicine and Biology Symposium (
SPMB
), Philadelphia, PA.
23.
Piovesan
,
D.
,
Pierobon
,
A.
,
DiZio
,
P.
, and
Lackner
,
J. R.
,
2012
, “
Measuring Multi-Joint Stiffness During Single Movements: Numerical Validation of a Novel Time Frequency Approach
,”
PLoS One
,
7
(
3
), p.
e33086
.
24.
Piovesan
,
D.
,
Pierobon
,
A.
, and
Ivaldi
,
F. A. M.
,
2013
, “
Critical Damping Conditions for Third Order Muscle Models: Implications for Force Control
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101010
.
25.
Peltonen
,
J.
,
Cronin
,
N.
,
Stenroth
,
L.
,
Finni
,
T.
, and
Avela
,
J.
,
2013
, “
Viscoelastic Properties of the Achilles Tendon In Vivo
,”
SpringerPlus
,
2
(
1
), p.
212
.
26.
Eliasson
,
P.
,
Fahlgren
,
A.
,
Pasternak
,
B.
, and
Aspenberg
,
P.
,
2007
, “
Unloaded Rat Achilles Tendons Continue to Grow, But Lose Viscoelasticity
,”
J. Appl. Physiol.
,
103
(
2
), pp.
459
463
.
27.
Ker
,
R. F.
,
1981
, “
Dynamic Tensile Properties of the Plantaris Tendon of Sheep (Ovis aries)
,”
J. Exp. Biol.
,
93
(
1
), pp.
283
302
.
28.
Riemersma
,
D.
, and
Schamhardt
,
H.
,
1985
, “
In Vitro Mechanical Properties of Equine Tendons in Relation to Cross-Sectional Area and Collagen Content
,”
Res. Vet. Sci.
,
39
(
3
), p.
263270
.
29.
Wang
,
X. T.
,
Ker
,
R. F.
, and
Alexander
,
R. M.
,
1995
, “
Fatigue Rupture of Wallaby Tail Tendons
,”
J. Exp. Biol.
,
198
(
3
), pp.
847
852
.
30.
Roberts
,
T. J.
, and
Konow
,
N.
,
2013
, “
How Tendons Buffer Energy Dissipation by Muscle
,”
Exercise Sport Sci. Rev.
,
41
(
4
), pp.
186
193
.
31.
Prilutsky
,
B. I.
, and
Zatsiorsky
,
V. M.
,
1994
, “
Tendon Action of Two-Joint Muscles: Transfer of Mechanical Energy Between Joints During Jumping, Landing, and Running
,”
J. Biomech.
,
27
(
1
), pp.
25
34
.
32.
Piovesan
,
D.
,
Pierobon
,
A.
, and
Mussa-Ivaldi
,
F. A.
,
2012
, “
Third-Order Muscle Models: The Role of Oscillatory Behavior in Force Control
,”
ASME
Paper No. IMECE2012-88081.
33.
Holland
,
J. H.
,
1992
, “
Genetic Algorithms
,”
Sci. Am.
,
267
(
1
), pp.
66
72
.
34.
Rendón-Mancha
,
J. M.
,
Cárdenas
,
A.
,
García
,
M. A.
,
González-Galván
,
E.
, and
Lara
,
B.
,
2010
, “
Robot Positioning Using Camera-Space Manipulation With a Linear Camera Model
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
726
733
.
35.
Cárdenas
,
A.
,
Goodwine
,
B.
,
Skaar
,
S.
, and
Seelinger
,
M.
,
2003
, “
Vision-Based Control of a Mobile Base and On-Board Arm
,”
Int. J. Rob. Res.
,
22
(
9
), pp.
677
698
.
36.
Hartley
,
R.
, and
Zisserman
,
A.
,
2003
,
Multiple View Geometry in Computer Vision
,
Cambridge University Press
,
Cambridge, UK
.
37.
Fortin
,
F.-A.
,
De Rainville
,
F.-M.
,
Gardner
,
M.-A.
,
Parizeau
,
M.
, and
Gagné
,
C.
,
2012
, “
DEAP: Evolutionary Algorithms Made Easy
,”
J. Mach. Learn. Res.
,
13
(
1
), pp.
2171
2175
.
38.
Cook
,
C.
, and
McDonagh
,
M.
,
1996
, “
Measurement of Muscle and Tendon Stiffness in Man
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
72
(
4
), pp.
380
382
.
39.
Cui
,
L.
,
Perreault
,
E. J.
,
Maas
,
H.
, and
Sandercock
,
T. G.
,
2008
, “
Modeling Short-Range Stiffness of Feline Lower Hindlimb Muscles
,”
J. Biomech.
,
41
(
9
), pp.
1945
1952
.
40.
Maganaris
,
C. N.
, and
Paul
,
J. P.
,
1999
, “
In Vivo Human Tendon Mechanical Properties
,”
J. Physiol.
,
521
(
1
), pp.
307
313
.
41.
Zajac
,
F.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), p.
359411
.
42.
Walmsley
,
B.
, and
Proske
,
U.
,
1981
, “
Comparison of Stiffness of Soleus and Medial Gastrocnemius Muscles in Cats
,”
J. Neurophysiol.
,
46
(
2
), pp.
250
259
.
43.
Melendez-Calderon
,
A.
,
Piovesan
,
D.
,
Patton
,
J.
, and
Mussa-Ivaldi
,
F.
,
2014
, “
Enhanced Assessment of Limb Neuro-Mechanics Via a Haptic Display
,”
Rob. Biomimetics
,
1
(
1
), p.
1
.
44.
Mahdi
,
A.
,
Meshkat
,
N.
, and
Sullivant
,
S.
,
2014
, “
Structural Identifiability of Viscoelastic Mechanical Systems
,”
PLoS One
,
9
(
2
), p.
e86411
.
45.
Funaya
,
H.
,
Shibata
,
T.
,
Wada
,
Y.
, and
Yamanaka
,
T.
,
2013
, “
Accuracy Assessment of Kinect Body Tracker in Instant Posturography for Balance Disorders
,”
2013 7th International Symposium on Medical Information and Communication Technology
(
ISMICT
), Tokyo, Japan, Mar. 6–8, pp.
213
217
.
46.
Obdrzalek
,
S.
,
Kurillo
,
G.
,
Ofli
,
F.
,
Bajcsy
,
R.
,
Seto
,
E.
,
Jimison
,
H.
, and
Pavel
,
M.
,
2012
, “
Accuracy and Robustness of Kinect Pose Estimation in the Context of Coaching of Elderly Population
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), San Diego, CA, Aug. 28–Sept. 1, pp.
1188
1193
.
47.
Khoshelham
,
K.
, and
Elberink
,
S. O.
,
2012
, “
Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications
,”
Sensors
,
12
(
2
), pp.
1437
1454
.
48.
Han
,
J. J.
,
Kurillo
,
G.
,
Abresch
,
R. T.
,
de Bie
,
E.
,
Lewis
,
A. N.
, and
Bajcsy
,
R.
,
2015
, “
Upper Extremity 3D Reachable Workspace Analysis in Dystrophinopathy Using Kinect
,”
Muscle Nerve
,
52
(
3
), pp.
344
355
.
49.
Li
,
Y.
,
Berkowitz
,
L.
,
Noskin
,
G.
, and
Mehrotra
,
S.
,
2014
, “
Detection of Patient's Bed Statuses in 3D Using a Microsoft Kinect
,”
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Chicago, IL, Aug. 26–30, pp.
5900
5903
.
50.
Pfister
,
A.
,
West
,
A. M.
,
Bronner
,
S.
, and
Noah
,
J. A.
,
2014
, “
Comparative Abilities of Microsoft Kinect and Vicon 3D Motion Capture for Gait Analysis
,”
J. Med. Eng. Technol.
,
38
(
5
), pp.
274
280
.
51.
Winter
,
D. A.
,
Patla
,
A. E.
,
Rietdyk
,
S.
, and
Ishac
,
M. G.
,
2001
, “
Ankle Muscle Stiffness in the Control of Balance During Quiet Standing
,”
J. Neurophysiol.
,
85
(
6
), pp.
2630
2633
.
You do not currently have access to this content.