This paper presents a robust-optimal fuzzy controller for position and attitude stabilization and vibration suppression of a flexible spacecraft during antenna retargeting maneuver. The fuzzy controller is based on Takagi–Sugeno (T–S) fuzzy model and uses the parallel distributed compensator (PDC) technique to quadratically stabilize the closed-loop system. The proposed controller is robust to parameter and unstructured uncertainties of the model. We improve the performance and the efficiency of the controller by minimizing the upper bound of the actuator's amplitude and maximizing the uncertainties terms included in the T–S fuzzy model. In addition to actuator amplitude constraint, a fuzzy model-based observer is considered for estimating unmeasurable states. Using Lyapunov stability theory and linear matrix inequalities (LMIs), we formulate the problem of designing an optimal-robust fuzzy controller/observer with actuator amplitude constraint as a convex optimization problem. Numerical simulation is provided to demonstrate and compare the stability, performance, and robustness of the proposed fuzzy controller with a baseline nonlinear controller.

References

References
1.
Meirovitch
,
L.
, and
Kwak
,
K. M.
,
1990
, “
Dynamics and Control of Spacecraft With Retargeting Flexible Antennas
,”
J. Guid. Control Dyn.
,
13
(
2
), pp.
241
248
.
2.
Juang
,
N. N.
,
Kyong
,
K. M.
, and
Junkins
,
J. L.
,
1989
, “
Robust Eigensystem Assignment for Flexible Structures
,”
J. Guid. Control Dyn.
,
12
(
3
), pp.
381
387
.
3.
Agrawal
,
B. N.
, and
Bang
,
H.
,
1995
, “
Robust Closed-Loop Control Design for Spacecraft Slew Maneuver Using Thrusters
,”
J. Guid. Control Dyn.
,
18
(
6
), pp.
1336
1344
.
4.
Meirovitch
,
L.
, and
Kwak
,
K. M.
,
1992
, “
Control of Flexible Spacecraft With Time-Varying Configuration
,”
J. Guid. Control Dyn.
,
15
(
2
), pp.
314
324
.
5.
Turner
,
J. D.
, and
Junkins
,
J. L.
,
1979
, “
Optimal Large Angle Maneuver With Simultaneous Shape Control/Vibration Arrest
,”
Flight Mechanics/Estimation Theory Symposium, Goddard Space Flight Center
, Greenbelt, MD,
NASA Conference Publication 2123
, pp.
201
214
.
6.
Meirovitch
,
L.
, and
Seungchul
,
L.
,
1994
, “
Maneuvering and Control of Flexible Space Robots
,”
J. Guid. Control Dyn.
,
17
(
3
), pp.
520
528
.
7.
Di Gennaro
,
S.
,
2003
, “
Output Stabilization of Flexible Spacecraft With Active Vibration Suppression
,”
IEEE Trans. Aerosp. Electron. Syst.
,
39
(
3
), pp.
747
759
.
8.
Yurkovich
,
S.
,
Oezguener
,
U.
, and
Al-Abbass
,
F.
,
1988
, “
Model Reference Sliding Mode Adaptive Control for Flexible Structures
,”
J. Astronaut. Sci.
,
36
(
3
), pp.
285
310
.
9.
Scarritt
,
S.
,
2008
, “
Nonlinear Model Reference Adaptive Control for Satellite Attitude Tracking
,”
AIAA
Paper No. 2008-7165.
10.
Park
,
Y.
,
Kusong
,
Y.
, and
Tahk
,
M. J.
,
2001
, “
Optimal Stabilization of Takagi–Sugeno Fuzzy Systems With Application of Spacecraft Control
,”
J. Guid. Control Dyn.
,
24
(
4
), pp.
767
777
.
11.
Park
,
Y.
,
Tahk
,
M. J.
, and
Bang
,
H.
,
2004
, “
Design and Analysis of Optimal Controller for Fuzzy Systems With Input Constraint
,”
IEEE Trans. Fuzzy Syst.
,
12
(
6
), pp.
766
779
.
12.
Zhang
,
X.
,
Zeng
,
M.
, and
Xu
,
X.
,
2011
, “
Output Feedback Attitude Tracking Control of Rigid Spacecraft for Takagi–Sugeno Fuzzy Model
,”
J. Inf. Comput. Sci.
,
8
(
13
), pp.
2743
2750
.
13.
Zhang
,
X.
,
Zeng
,
M.
, and
Yu
,
X.
,
2011
, “
Fuzzy Control of Rigid Spacecraft Attitude Maneuver With Decay Rate and Input Constraints
,”
Int. J. Uncertainty, Fuzziness Knowl. Based Syst.
,
19
(
6
), pp.
1033
1046
.
14.
Zhang
,
X.
,
Zeng
,
M.
, and
Li
,
Y.
,
2011
, “ H
Control for Spacecraft Attitude Maneuver With Input Constraint
,”
J. Comput. Inf. Syst.
,
7
(
9
), pp.
3077
3084
.
15.
Butler
,
E. J.
,
Wanh
,
H. O.
, and
Burken
,
J. J.
,
2011
, “
Takagi–Sugeno Fuzzy Model-Based Flight Control and Failure Stabilization
,”
J. Guid. Control Dyn.
,
34
(
5
), pp.
1543
1555
.
16.
Hong
,
S. K.
, and
Nam
,
Y.
,
2003
, “
Stable Fuzzy Control System Design With Pole Placement Constraint: An LMI Approach
,”
Comput. Ind.
,
51
(
1
), pp.
1
11
.
17.
Ayoubi
,
M. A.
, and
Sendi
,
C.
,
2014
, “
Takagi–Sugeno Fuzzy Model-Based Control of Spacecraft With Flexible Antenna
,”
J. Astronaut. Sci.
,
61
(
1
), pp.
40
59
.
18.
Sendi
,
C.
, and
Ayoubi
,
M. A.
,
2014
, “
Robust Fuzzy Logic-Based Tracking Control of a Flexible Spacecraft With H Performance Criteria
,”
AIAA
Paper No. 2014-4417.
19.
Meirovitch
,
L.
,
1990
,
Dynamics and Control of Structures
,
Wiley
,
New York
, Chap. 7.
20.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst., Man, Cybernetics
,
15
(
1
), pp.
116
132
.
21.
Kemin
,
Z.
, and
Pramod
,
K.
,
1988
, “
Robust Stabilization of Linear Systems With Norm-Bounded Time-Varying Uncertainty
,”
Syst. Control Lett.
,
10
(
1
), pp.
17
20
.
22.
Tanaka
,
K.
,
Ikeda
,
T.
, and
Wang
,
H. O.
,
1996
, “
Robust Stabilization of Class of Uncertain Nonlinear System Via Fuzzy Control: Quadratic Stabilizability, H Control Theory, and Linear Matrix Inequalities
,”
IEEE Trans. Fuzzy Syst.
,
4
(
1
), pp.
1
13
.
23.
Yoneyama
,
J.
,
Nishikawa
,
M.
,
Katayama
,
H.
, and
Ichikawa
,
A.
,
2000
, “
Output Stabilization of Takagi–Sugeno Fuzzy Systems
,”
Fuzzy Sets Syst.
,
111
(
2
), pp.
253
266
.
24.
Xiao
,
J. M.
,
Zeng
,
Q. S.
, and
Yan
,
H. Y.
,
1998
, “
Analysis and Design of Fuzzy Controller and Fuzzy Observer
,”
IEEE Trans. Fuzzy Syst.
,
6
(
1
), pp.
41
51
.
25.
Wang
,
H. O.
, and
Tanaka
,
K.
,
1995
, “
Parallel Distributed Compensation of Nonlinear Systems by Takagi–Sugeno Fuzzy Model
,” Fuzzy Systems, International Joint Conference of the Fourth
IEEE
International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium
, Yokohama, Japan, Mar. 20–24, pp.
531
538
.
26.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
3rd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
, Chap. 14.
27.
Tanaka
,
K.
, and
Wang
,
H. O.
,
2001
,
Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach
,
Wiley
,
New York
, pp.
66
152
.
28.
Löfberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
IEEE
International Symposium on Computer Aided Control System Design
, Taipei, Taiwan, Sept. 4, pp.
284
289
.
You do not currently have access to this content.